Mast Cells in Allergic Diseases
Chemical Immunology and Allergy

Vol. 87

Series Editors

Johannes Ring Munich
Luciano Adorini Milan
Claudia Berek Berlin
Kurt Blaser Davos
Monique Capron Lille
Judah A. Denburg Hamilton
Stephen T. Holgate Southampton
Gianni Marone Napoli
Hirohisa Saito Tokyo
Chemical Immunology and Allergy
Formerly published as ‘Progress in Allergy’ (Founded 1939)
continued 1990–2002 as ‘Chemical Immunology’

Hirohisa Saito
Department of Allergy and Immunology
National Research Institute for Child Health and Development
Setagaya, Tokyo
Japan

Yoshimichi Okayama
Laboratory for Allergy Transcriptome
RIKEN Research Center for Allergy and Immunology
Yokohama City, Kanagawa
Japan

Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus.

Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 2005 by S. Karger AG, P.O. Box, CH–4009 Basel (Switzerland)
www.karger.com
Printed in Switzerland on acid-free paper by Reinhardt Druck, Basel
ISSN 1660–2242
Contents

XIII Preface
H. Saito, Tokyo

1 Regulation of Mast Cell Development
M. Shiohara, K. Koike, Matsumoto

1 Abstract
1 Phenotypic Characteristics of Mast Cells
2 Human Mast Cells Are Derived from Multipotential Hematopoietic Progenitors
3 Human Mast Cell Development on Stimulation with
 SCF Alone in Serum-Deprived Culture
5 SCF-Dependent Human Mast Cell Development Is Regulated by Various Factors
6 Thrombopoietin
7 Interleukin-9
9 Interleukin-16
9 Nerve Growth Factor
9 Interleukin-3
10 Interleukin-4, Interleukin-6
11 Retinoids
13 Interferon
13 Property of Cultured Mast Cells
14 Conclusions and Future Directions
16 References
22 Regulation of Mast Cell Activation through FcεRI
 S. Yamasaki, T. Saito, Yokohama

Abstract
Structure and Function of FcR on Mast Cells
Function of FcRγ in Mast Cell Activation
Hypersensitivity Mediated through FcγR on Mast Cells
FcγR-ITAM-Dependent and Independent Mast Cell Response through FcεRI
Regulation of Mast Cell Survival vs. Degranulation through FcεRI
Acknowledgments
References

32 Role of Oxidants in Mast Cell Activation
 Y. Suzuki, T. Yoshimaru, T. Inoue, O. Niide, C. Ra, Tokyo

Abstract
ROS and Regulation of the Cellular Redox Balance
Generation of ROS in Non-Phagocytic Cells through the NOX/DUOX Family
Role of ROS in Mast Cell Activation
FcεRI Signaling in Mast Cells
Generation of ROS in Mast Cells and Basophils
Signal Transduction Pathway for ROS Generation
Role of Oxidants in FcεRI Signaling and Allergy
Conclusions
Acknowledgements
References

43 Roles of Adaptor Molecules in Mast Cell Activation

Abstract
Adaptor Molecules in Mast Cells
Constitutive Protein-Protein Interactions
Inducible Protein-Protein and Protein-Lipid Interactions
SH2 Domains and PTB Domains
PH Domains
Receptors and Receptor Subunits as Adaptor Molecules
FcεRI and FcγRI: β and γ Subunits
FcγRIIb and gp49b
Kit
Transmembrane Adaptor Molecules
LAT (Linker for Activation of T Cells)
NTAL (Non-T Cell Activation Linker)
Cbp/PAG (Csk-Binding Protein/Phosphoprotein Associated with GEMs)
Eicosanoid Mediators of Mast Cells: Receptors, Regulation of Synthesis, and Pathobiologic Implications

J.A. Boyce, Boston, Mass.

Abstract

Introduction

MC-Associated Eicosanoids

PGD₂

Biosynthesis

Actions of PGD₂ in Humans: Direct Challenges

Receptors for PGD₂ and Receptor-Mediated Functions in vitro

Effects on Leukocytes

Effects on Smooth Muscle

Functions of PGD₂ and Its Receptors in vivo: Mouse Models

Allergen-Induced Pulmonary Inflammation

Cysteiny1 Leukotrienes

Biosynthesis

Actions in Humans: Direct Challenges

Receptors for cysLTs and Receptor-Mediated Functions in vitro

Effects on Smooth Muscle and Endothelial Cells

Effects on Leukocytes

Functions of cysLTs and Their Receptors in vivo: Pharmacologic Studies in Humans

Asthma

Functions of cysLTs and their Receptors in vivo: Disease Models in Mice

Microvascular Responses

Allergen-Induced Pulmonary Inflammation

Dendritic Cell Maturation and Migration

Pulmonary Fibrosis

Regulation of Eicosanoid Synthesis by MCs

Heterogeneity of Eicosanoid Generation by Tissue MC Subsets

Regulation of Eicosanoid Pathways in vitro by Exogenous Cytokines

PGHS/PGDS Pathway

5-LO/LTC₄S Pathway

Summary

References
151 Acknowledgement
152 References

154 Potential Role of Stem Cell Factor in the Asthma Control by Glucocorticoids
C.A. Da Silva, N. Frossard, Illkirch

154 Abstract
154 Introduction
155 Glucocorticoids and Asthma
156 Glucocorticoids and Mast Cells
157 Glucocorticoids and SCF
159 Conclusions
159 References

163 Mast Cell Ion Channels
P. Bradding, Leicester

163 Abstract
164 Mast Cells in Asthma and Allergy
164 Critical Role of Ion Channels in Mast Cell Activation
164 Mast Cell K⁺ Channels
168 Mast Cell Cl⁻ Channels
171 Mast Cell Ca²⁺ Channels
173 Na⁺ Channels
175 P2X Receptors
175 Hypothetical Mast Cell Electrical ‘Excitation’ Cycle
176 References

179 Using Mast Cell Knock-In Mice to Analyze the Roles of Mast Cells in Allergic Responses in vivo
M. Tsai, M.A. Grimbaldeston, M. Yu, S.-Y. Tam, S.J. Galli, Stanford, Calif.

179 Abstract
181 ‘Mast Cell Knock-In Mice’ as a Model for Studying Mast Cell Functions in vivo
184 Mast Cells in Reactions of Immediate Hypersensitivity
184 IgE-Dependent Local or Systemic Reactions
186 Anaphylaxis or Local Immediate Hypersensitivity Reactions in Actively Immunized Mice
188 Mast Cells in Allergic Inflammation in the Airways: Mouse Models of Asthma
189 Mast Cells in Allergic Inflammation in the Skin: Delayed Hypersensitivity, Contact Hypersensitivity (CHS) and Atopic Dermatitis
189 Update on the Controversy Regarding the Roles of Mast Cells in CHS and Delayed Hypersensitivity
190 Potential Roles of Mast Cells in Certain CHS Responses
191 Potential Roles of Mast Cells in Other Models of Allergic Inflammation in the Skin
198 Mast Cell-Specific Genes – New Drug Targets/Pathogenesis
 H. Saito, Tokyo

198 Abstract

199 Introduction

199 Mast Cells vs. Other Cell Types

203 Activated vs. Resting Mast Cells

204 Glucocorticoid Sensitivity of Mast Cell Transcripts

205 Mast Cell Subset-Specific Genes

207 Human Mast Cells vs. Mouse Mast Cells

209 Computational Modeling of Human Mast Cells in silico

209 References

213 Author Index

214 Subject Index
Mast cells were named after the Greek word ‘mastos’, which means breast, in 1878 by Paul Ehrlich because he believed that the intracellular granules contained nutrients. The discovery of IgE and its association with mast cell histamine release provided the initial understanding of the role of mast cells in asthma and acute allergic reactions. Thus, the cross-linking of high-affinity IgE receptors on mast cells was regarded as the essential mechanism involved in allergic diseases and was the major target for the therapeutic development of drugs. After the 1980s, allergic inflammation characterized by eosinophil recruitment into tissues was found to be essential in asthma pathology. Then, inhaled corticosteroids, which prevent eosinophilic inflammation but not mast cell degranulation, were widely recognized as the first-line therapy for asthma. The role of mast cells was thus considered relevant only for the early asthmatic response to allergen challenge, but less involved in asthmatic reactions found in patients having chronic symptoms.

Recently, the difference between asthma and eosinophilic bronchitis lacking airway hyperresponsiveness and airflow obstruction was found to be infiltration of airway smooth muscle by mast cells [1]. Mast cells produce a variety of lipid mediators, chemokines, cytokines, and enzymes that may interact with airway smooth muscle cells and cause hyperreactivity to constrictive stimuli and proliferation.

More recently, Oguma et al. [2] have described an exemplary investigation of the prostaglandin D₂ (PGD₂) receptor gene (PTGDR) as a candidate for a role in the susceptibility to asthma in young adults. PGD₂ is almost exclusively produced by activated mast cells but not other cell types and can evoke airway
hypersensitivity and the chemotaxis of T cells, eosinophils and basophils through interaction with two different receptors: one is prostanoid DP receptor (translated from \textit{PTGDR}) and the other is chemotactant receptor-homologous molecule expressed on Th2 cells (CRTH2).

Cytokines generated by both resident and freshly recruited cells are responsible for the initiation and coordination of many local processes, including allergic inflammation and tissue remodeling. In IgE-dependent allergic inflammation it would be logical to expect that the mast cell would generate a spectrum of cytokines directed at initiating and maintaining allergic inflammation. Indeed, human mast cells were found to generate multiple cytokines and chemokines, which activate a variety of cell types including T cells and eosinophils.

Mast cells are now recognized as tissue-dwelling effector cells that play multiple roles not only in immediate-type allergic reaction but also in innate immunity, inflammation, angiogenesis, and tissue remodeling. In this book, we have focused on the roles of mast cells in allergic diseases and discuss the future direction of discovering drugs. Another implication of this book is to understand mast cells at the system level. System biology is a research category to understand biology at the system level by examining the structure and dynamics of cellular and organismal functions, rather than the characteristics of isolated parts of a cell or organism [3]. Understanding the properties of systems may have an impact on the future of medicine. The most feasible application of systems biology research is to create a detailed model of cell regulation, focused on particular signal-transduction cascades. It is expected to provide system-level insights into mechanism-based drug discoveries. Such models may help to identify feedback mechanisms that offset the effects of drugs and predict systemic side effects.

\textit{Hirohisa Saito, Tokyo}

\textbf{References}