Parasites and Allergy
Chemical Immunology and Allergy

Vol. 90

Series Editors

Johannes Ring Munich
Luciano Adorini Milan
Claudia Berek Berlin
Kurt Blaser Davos
Monique Capron Lille
Judah A. Denburg Hamilton
Stephen T. Holgate Southampton
Gianni Marone Napoli
Hirohisa Saito Tokyo
Parasites and Allergy

Volume Editors

Monique Capron Lille
François Trottein Lille

27 figures, 1 in color, and 2 tables, 2006
Contents

XI Foreword

1 Helminth-Induced Immunoregulation of an Allergic Response to Food
 1 Abstract
 1 Microbes and Allergy
 3 Enteric Helminth Infection Acts as a Th2-Polarizing Mucosal Adjuvant
 5 Enteric Helminth Infection Induces Th2 Responses without Atopy
 8 How Does Helminth Infection Protect against Allergy: Immunoregulatory T or B Cells
 11 Conclusions
 11 References

14 The Mutual Influence of Nematode Infection and Allergy
 D. Negrão-Corrêa, M.M. Teixeira, Belo Horizonte
 14 Abstract
 14 The Worldwide Relevance of Nematode Infections
 15 Nematode Infections and the Hygiene Hypothesis
 17 The Model of S. venezuelensis Infection in Rodents
 18 S. venezuelensis Infection Induces Eosinophilic Airway Inflammation and Airway Hyperreactivity
 20 Airway Hyperreactivity Is Shut Off by S. venezuelensis Infection but Prevents Parasite Infection
 22 Role of a Th2 Immune Response for S. venezuelensis Elimination from the Intestine
 25 Concluding Remarks
Acknowledgements

References

Human Schistosomiasis Decreases Immune Responses to Allergens and Clinical Manifestations of Asthma
M.I. Araujo, E.M. de Carvalho, Salvador

Abstract
Immunological Response and Clinical Forms of Schistosomiasis
Down-Modulation of Type 1 Immune Response in S. mansoni Infection
Immune Response in Atopy
Influence of Parasite Infection on the Development of Atopy and Asthma
References

Proteases in Helminth- and Allergen-Induced Inflammatory Responses
S. Donnelly, J.P. Dalton, Sydney; A. Loukas, Brisbane

Abstract
Proteases Are Major Allergens Derived from Various Organisms
How Do Proteases Act as Allergens?
Disruption of the Epithelial Barrier
Modulation of Dendritic Cell (DC) Function
Modulation of B and T Cell Function
Activation of Mast Cells Via Protease Activated Receptors
Alteration of the Protease/Anti-Protease Balance
Proteases Provoke Allergic Responses to Non-Peptidolytic Molecules
Do Parasites Exacerbate or Protect against Allergy?
Helminth Parasites Secrete Proteases
Can Parasite Proteases Sensitise Individuals to Environmental Proteases Via Cross-Reactive IgE?
Parasite Peptidolytic Activity May Sensitise Individuals to Allergens
Degranulation of Mast Cells and Basophils
Modulation of T Cell Responses
Recruitment and Activation of Alternatively Activated Macrophages
Are Helminth Proteases Allergens?
Conclusion
Acknowledgements
References

Mechanisms Underlying Helminth-Induced Th2 Polarization: Default, Negative or Positive Pathways?
D. Jankovic, S. Steinfeld, M.C. Kullberg, A. Sher, Bethesda, Md.

Abstract
The Immune Response during Infection with Schistosoma mansoni
Role of IL-4 in S. mansoni-Induced Th2 Polarization
S. mansoni-Induced Th2 Polarization Requires DC: Evidence against a Default Pathway
S. mansoni Th2 Polarization As A Negative Pathway: Down-Regulation of DC Functions

Contents VI
73 S. mansoni Th2 Polarization As A Positive Pathway: Selective Activation of DC
74 How Do SEA-Conditioned DC Promote IL-4 Secretion in CD4+ Cells?
77 Conclusions
77 Acknowledgements
78 References

82 Regulation of Dendritic Cell Function by Pathogen-Derived Molecules Plays a Key Role in Dictating the Outcome of the Adaptive Immune Response
E.J. Pearce, C.M. Kane, J. Sun, Philadelphia, Pa.

82 Abstract
83 Dendritic Cells and Their Role in Th Cell Activation
84 Th Response Polarization
85 The Interaction of SEA with DCs
86 Eggs and SEA Induce Different Responses – An Unexpected Finding
87 SEA Inhibits TLR-Initiated DC Maturation
88 TLR-Ligand-Activated DCs Provide Negative Instruction for Th2 Response Polarization
89 Acknowledgements
89 References

91 Glycans Modulate Immune Responses in Helminth Infections and Allergy
I. van Die, Amsterdam; R.D. Cummings, Oklahoma City, Okla.

91 Abstract
93 Glycan Ags in Schistosomes
95 Schistosome Glycan Ags Generate High Levels of Anti-Glycan Abs in Infection
97 Helminth- and Allergen-Derived Glycan Ags Induce Th2 Responses
98 Immunogenic Glycan Ags Shared between Helminths and Allergens Are IgE Epitopes
100 Glycan Ags Regulate Immune Responses via Interaction with Host Lectins
101 C-Type Lectins on Antigen-Presenting Cells Recognize Glycan Ags
102 Recognition of Schistosome- or Allergen-Derived Glycan Ags by Antigen-Presenting Cells
102 Schistosome Egg Glycan Ags Interact with DC-SIGN
103 L-SIGN Binds Schistosome Egg Glycan Ags
103 Interaction of Schistosome Glycan Ags with hMGL
104 The Mannose Receptor Recognizes Ags from Schistosome Eggs and House Dust Mite Der p 1
104 Host Protection Mechanisms May Include the Binding of Glycosylated Ags by Soluble Lectins in Schistosomiasis and Allergy
105 Interaction of Helminth Glycan Ags and Allergens with Collectins
105 Galectin-3 Recognizes LDN Glycan Ags within Schistosome SEA
106 Does IL-10 Production Induced by Parasite Glycans Contribute to Protection Against Allergy?
108 Concluding Remarks
109 Acknowledgements
109 References
Basophilia
Basophil Activation in Helminth Infections
Helminth Antigens as ‘Super Allergens’
Potential Roles of Basophils in Helminth Infections

157 Innate, Adaptive and Regulatory Responses in Schistosomiasis: Relationship to Allergy
F.C. Hartgers, H.H. Smits, Leiden; D. van der Kleij, Rijswijk; M. Yazdanbakhsh, Leiden

157 Abstract
158 Innate Immune Responses in Schistosomiasis
160 Adaptive Immune Responses in Schistosomiasis
162 Downregulation of the Immune Response during Chronic Schistosome Infection
162 Modulation of Innate Responses
165 Modulation of Adaptive Responses
165 Modulation via Regulatory T Cells
167 Relationship between Schistosomiasis and Allergy
167 Prevention of Atopy
168 Role of Regulatory T Cells
169 IgG4 Antibodies and IL-13 Decoy Receptor
171 The Window of Immune Suppression
172 Concluding Remarks
172 Acknowledgements
172 References

176 Regulatory T Cells Induced by Parasites and the Modulation of Allergic Responses
M.S. Wilson, R.M. Maizels, Edinburgh

176 Abstract
177 The Cellular Basis of Allergic Diseases
179 Regulatory T Cell (Treg) Biology
181 Regulatory T Cells in Allergic Diseases
183 Helminth-Mediated Immune Regulation and Treg Cells
184 Helminth Infection and Allergic Disease
186 Model Systems for Infection and Allergy
189 Alternative Models
190 Molecular Mechanisms at the Parasite-Allergy Interface
191 Infectious Tolerance and the Specificity of Treg Cells
192 Conclusions
193 References

196 Author Index
197 Subject Index
Foreword

One of the key words of immunology at the beginning of the 21st century is ‘regulation’. Twenty-five years later the Th1/Th2 paradigm, the concept of regulatory cell populations, is now in the heart of our understanding of immune response.

Helminths and allergic conditions are recognized as the main Th2 cell inducers. The negative association of allergic manifestations and helminth infections has been debated for over 30 years. It is, however, only in the recent past, that modulation of allergy by helminth infections has been clearly substantiated and shown to be consistent with the activity of regulatory cell populations, which control effector mechanisms of both Th1 and Th2 types.

Although remarkable progress has been made in identifying the molecular events required for Th2 differentiation, a number of questions which are addressed in this volume point to essential challenges.

Several contributions illustrate the critical importance of characterization of helminth molecules with Th2 or regulatory inducing activities and their modes of action in dendritic cells.

The large emphasis given to glycan epitopes highlights the profound immunomodulatory properties of glycan antigens and their role in inducing two key regulatory cytokines IL-10 and TGF-β. It is striking that the specificity of helminth infection does not influence the profile of the regulatory response: Schistosomes, Onchocerca, Wuchereria or gut nematodes for instance, induce similar patterns of cytokine production, the regulation appearing more related to the chronicity of infections than to the pathogen itself.
Although the identification of regulatory cell populations has progressed, we are left with a global notion of heterogeneity and a rather unclear respective role of the various incriminated populations: regulatory T and B cells, natural killer T cells, mast cells and basophils, etc. The concept that primary and secondary regulatory populations may account for their heterogeneity is very stimulating, and the role of Foxp3 as a master control gene is very attractive.

Whereas most of the contributions discuss the down-modulation of allergy by helminths, there is also some evidence that allergy or predisposition to atopic diseases may protect against helminth infections. It is, on the other hand, of particular interest that removal or inhibition of regulatory T cells leads to the effective clearance of infection and restoration of antigen specific activity.

In practical terms, one may expect that allergen-specific immunotherapy, which generates populations of allergen-specific regulatory T cells, producing IL-10 and TGF-β, can significantly reduce allergic manifestations. Conversely, successful immunization against helminth infections and the development of efficient vaccines will certainly rely on a subtle balance between the induction of appropriate effector mechanisms and the expression of regulatory responses.

In this context, the various contributions to this volume dedicated to Parasites and Allergy reveal a new dimension of host-parasite interactions and of the importance of anti-inflammatory responses in chronic helminthiasis. They also provide a novel insight on the possible modes of down-modulation of unwarranted immune responses. They finally pave the way to new directions of research for the successful immunization against helminths and the prevention of inflammatory responses in allergic and autoimmune diseases.

André and Monique Capron, Lille