Allergy and Asthma in Modern Society:
A Scientific Approach

Dedicated to Kurt Blaser

Volume Editor

Reto Crameri Davos

29 figures, 3 in color, and 12 tables, 2006
Contents

XIII Foreword
R. Crameri, Davos

Introduction

1 The Magic Mountain of Allergy Research
J. Ring, H. Behrendt, München

The Environment

3 Environmental Factors Influencing Allergy and Asthma

3 Abstract
6 The Cat Paradox: High Exposure to Cat or Dog Allergens Does Not Increase the Prevalence or Titer of IgE ab
7 The American Inner City as a Special Issue
8 The Role of Specific Antibody Responses in Influencing Total Serum IgE, the Prevalence of Asthma and Severity of Asthma
9 Endotoxin: Another Environmental Exposure with a Nonlinear Dose Response
10 Conclusions
12 Acknowledgements
13 References

16 Should Asthma Management Include Sojourns at High Altitude?
G. Schultze-Werninghaus, Bochum

16 Abstract
30 The Immunological Basis of the Hygiene Hypothesis

H. Renz, N. Blümer, S. Virna, S. Sel, H. Garn, Marburg

Abstract

Epidemiological and Human Exposure Studies

Animal Models: A Proof-of-Concept Approach

Cellular and Molecular Mechanisms of Allergy Protection

References

49 Molecules Involved in the Regulation of Eosinophil Apoptosis

H.-U. Simon, Bern

Abstract

Proapoptotic Extracellular Stimuli

Death Receptor Ligands

Other Death Triggers: Siglec-8, CD30, CD45 and CD69

Antiapoptotic Extracellular Stimuli

Classical Survival Cytokines

TNF-Like Molecules

Intracellular Regulators

Caspases

IAP Family Members

Bel-2 Family Members

Conclusions

References

59 The Role of T Lymphocytes in Asthma

A.B. Kay, London

Abstract

The Asthma Phenotypes

Effector Mechanisms: How Do T Cells Cause Asthma?

Are T Cells Required to Perpetuate Asthma?

T-Cell-Derived Cytokines and Cytokines That Act on T Cells
64 Controls of T-Cell Cytokine Production
64 TReg Cells and Asthma
65 Provoked Asthma under Controlled Clinical Conditions
66 Activation of T Cells in Asthma: Antigen-Presenting Cells
67 CD8+ T Cells and γδ Cells
67 Homing of T Cells to the Airway in Asthma
69 T Cells and Treatment of Asthma
69 Corticosteroids
69 Cyclosporin A
70 Antigen-Directed Targeting of T Cells and TRegs: The Future for Asthma Therapy?
71 References

The Skin

76 Allergic Manifestations of Skin Diseases – Atopic Dermatitis
K. Breuer, Norderney/Hannover; T. Werfel, A. Kapp, Hannover
76 Abstract
76 Atopic Dermatitis – A Chronic Inflammatory Skin Disease
78 Food Allergy in AD
80 Inhalant Allergens and AD
80 The Importance of Staphylococcus aureus as a Trigger Factor of AD
82 New Treatment Options for AD
84 Conclusions
84 References

87 Skin-Homing T Cells in Cutaneous Allergic Inflammation
L.F. Santamaria-Babí, Barcelona
87 Abstract
89 Atopic Dermatitis
92 Allergic Contact Dermatitis
92 Nonimmediate Cutaneous Allergic Reactions to Drugs
93 Features of Circulating CLA+ T Cells in Cutaneous Allergic Inflammation
95 References

98 The Role of Sensitization to Malassezia sympodialis in Atopic Eczema
P. Schmid-Grendelmeier, Zurich; A. Scheufler, Stockholm; R. Crameri, Davos
98 Abstract
99 Skin Barrier Dysfunction and Its Impact on Microbial Colonization
99 Fungi as Contributing Factors to AE
100 The Special Role of Malassezia Species in Allergic Reactions Related to AE
101 The Allergen Repertoire of M. sympodialis
103 M. sympodialis in the Intrinsic Form (Nonatopic Type) of AE
104 Therapeutic Long-Term Options and Anti-Inflammatory Approaches

Contents VII
110 Allergic Conjunctivitis: The Forgotten Disease

S. Bonini, Rome

110 Abstract
110 Definition
111 Classification
111 Etiopathogenesis
114 Clinical Presentation
116 Diagnosis
117 Treatment
118 Prognosis
119 References

121 Fungal Allergies: A Yet Unsolved Problem

121 Abstract
122 Epidemiology
123 Incidence and Clinical Relevance of Fungal Allergies
124 Diagnosis of Fungal Allergy
125 The Dimension of the Problem
126 Recombinant Fungal Allergens
127 Cross-Reactivity
130 Involvement of Fungal Allergens in the Pathogenesis of Severe Atopic Diseases
131 Conclusions
132 Acknowledgements
132 References

134 Structural Features of Allergenic Molecules

R.C. Aalberse, Amsterdam

134 Abstract
135 Cross-Reactivity in Relation to Mast Cell Triggering
138 Cross-Reactivity in Relation to B-Cell Activation: Cross-Reactive Priming, Epitope Spreading and ‘The Original Antigenic Sin’
138 IgE Immunogenicity
139 The ‘Healthy’ Anti-allergen Immune Response and Its Relation to the Modified Th2 Response
141 Working Hypothesis: the ‘Nonmodified’ Th2 Response is an Incomplete B-Cell Response Which Fails to Induce Mature Germinal Centers
143 To What Extent Is IgG4 Special in This Context?
Consequences for the Allergenicity Issue

References

Regulation of Human T Helper Cell Differentiation by Antigen-Presenting Cells: The Bee Venom Phospholipase A2 Model
J.M. Carballido, N. Carballido-Perrig, C. Schwärzler, G. Lametschwandtner, Vienna

Abstract

Th-Cell Differentiation Is Largely Controlled by Cytokine Signaling

Th Polarizing Signals Generated by DC Are Regulated by Danger Signals

Costimulatory Molecules Displayed on DC Surfaces Modulate Th-Cell Differentiation

Antigen Presentation by Nonprofessional APC Influences Th-Cell Differentiation

Affinity of Interaction between MHC Class II Molecules and Antigen Peptides Might Determine the Type of Immune Response

Conclusions

Acknowledgements

References

T Regulatory Cells in Allergy
M. Akdis, K. Blaser, C.A. Akdis, Davos

Abstract

Anergy, Tolerance and Active Suppression Are Not Fully Distinct Events

Essential Features of Allergic Inflammation

T_{Reg} Cells

Tr1 Cells

Th3 Cells

CD4+ CD25+ T_{Reg} Cells

Other Regulatory Cells

B_{Reg} Cells: Do They Exist?

Dendritic Cells That May Play a Regulatory Function

Other Cells with Possible Regulatory Function

Suppression Mechanisms of T_{Reg} Cells

Clinical Relevance of T_{Reg} Cells

Conclusions

Acknowledgements

References

The Role of Histamine in Regulation of Immune Responses
M. Jutel, Davos/Wroclaw; K. Blaser, C.A. Akdis, Davos

Abstract

Cellular Sources of Histamine

Synthesis and Metabolism of Histamine

Histamine Receptors
Allergic diseases and asthma constitute a growing health care problem, especially in industrialized countries. In spite of marked worldwide variation, the prevalence of symptoms of asthma, eczema and allergic rhinoconjunctivitis is increasing. Although genetic factors defining the atopic background of a population are undoubtedly important, they cannot explain this phenomenon. As the genetic background of a population must be regarded as quite stable over short periods of time, environmental factors must be included to explain the remarkable changes in the prevalence and severity of asthmatic and allergic diseases during the last 40 years. As brilliantly summarized by Platts-Mills et al., environmental factors can influence the spread of these diseases; however, single changes in environmental parameters alone cannot explain the consistency or the scale of the rise in allergy and asthma observed between 1960 and 2000. Our environment is extremely complex, poorly defined and difficult to monitor. However, a direct demonstration of the pivotal influence of environmental factors on the severity of asthma comes from a recent reinvestigation by Schultze-Werninghaus of a very old observation describing the beneficial role of sojourns at high altitude. The therapeutic value of such sojourns for severe bronchial asthma patients is well documented, and there is no scientific reason to doubt it. Obviously, our limited knowledge about host-environment interactions and atopic diseases favored the development of various, more or less attractive hypotheses and theories aiming to explain this phenomenon. Among these, the hygiene hypothesis, discussed by Renz et al., is perhaps the most attractive. According to current scientific views, it tries to integrate the interaction between environmental factors, innate and adaptive immunity into a sophisticated
model. We must realize that the human body is not an isolated system. To survive, we need a continuous selective exchange with our environment, allowing the uptake of essential biovital elements and excretion of unwanted metabolites, but aiming to avoid offending agents. Physical barriers and an orchestrated primary and secondary line of defense are required to allow survival. Skin and mucosal surfaces represent by far the largest interface between a human being and the environment and from this point of view it is not astonishing that the respiratory tract (Simon, Kay), skin (Breuer et al., Santamaría-Babi, Bonini) and digestive tract determine an individual’s quality of life. However, other diseases, notably conjunctivitis, an often forgotten disease (Bonini), significantly contributes to the health burden of modern society as well.

Inappropriate immune responses to normally harmless environmental antigens, following, for example, exposure to fungi (Crameri et al.) still represent an unsolved health care problem although our understanding of the structural basis of allergens (Aalberse) and their role in the pathogenesis of chronic allergic diseases (Schmid-Grendelmeier et al.) is rapidly increasing. Complex mechanisms regulate the healthy immune responses to allergen exposure (Carballido et al., Akdis et al.) and it is the long-neglected study of these responses that recently contributed to a better understanding of the orchestrated cascades resulting either in normal, protective, or abnormal, disease-related immune responses. Antigen-antibody interactions at the end of the cascade are relatively easy to access experimentally and, as a consequence, our knowledge about these phenomena is quite advanced. Early, tightly regulated cellular interactions resulting from the complex interplay between cytokines, receptors and small molecules, such as histamine (Jutel et al.), strongly depending on genetic background and environmental influences, determine the immune response initiated and the fate of each single individual. It becomes increasingly evident that such immune responses in allergy and asthma are extremely complex. New global technologies based on gene expression profiling (Schmidt-Weber) and proteomic approaches will be required to integrate our knowledge about molecular and cellular interactions into more complete networks aimed at understanding the pathophysiology of allergy and asthma.

However, there is light at the end of the tunnel. The considerable progress in our understanding of molecular and cellular interactions starts to translate into new strategies to combat allergic diseases (Akdis et al., Achatz et al.). Although many drugs are available to control the symptoms of allergy and asthma, immunotherapy is the only treatment currently able to cure these diseases. Several new treatments have been or will be introduced soon for clinical use and will hopefully strongly improve immunotherapy and benefit the patients.
Allergy and asthma are very important diseases, and as a consequence, an overwhelming number of original contributions, reviews and books covering the different aspects of these diseases are published every year. Why a book more about this topic? The answer to this justified question can be found in the introduction by Johannes Ring: Kurt Blaser, the director of the Swiss Institute of Allergy and Asthma Research, celebrated his 65th birthday on June 25, 2005. He dedicated all his life to allergy and asthma research and has become one of the most prominent and appreciated global players in this field. I am convinced that, together with me, all authors of this book and many other scientists worldwide are grateful to him for many exceptional scientific contributions and political fights to speed up progress in a field which, in spite of its recognized socio-economic impact, still lacks the political support to mobilize the financial resources required to satisfy its needs. Thank you Kurt!

I am especially grateful to Thomas Nold and his team for their excellent cooperation in editing this book, to the industrial sponsors and to Johannes Ring who supported the idea from the beginning. Of course, I am very grateful to the authors, who have spent much time for the preparation, revision and final checking of the manuscripts. Finally, a big thanks goes to Rosalina and Danja, the unlucky members of the family, waiting at home until I am back from work every day. I am not so sure that I would have that much patience.

Reto Crameri