Noninvasive Ventilation in Acute Pancreatitis Respiratory Failure: Deus ex Machina?

Ioannis Pneumatikosa Demosthenes Bourosb

aIntensive Care Unit, and bDepartment of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece

Thirty years ago, the mortality of acute pancreatitis has fallen from 25 to 30%, but remained at 6–10% for most of the past 2 decades [1]. The initial improvement did not occur because of any specific treatment for acute pancreatitis, but because of improved supportive treatment especially due to advances in critical care. In a recent study, acute respiratory failure (ARF) was among the five independent prognostic factors for hospital mortality in severe acute pancreatitis (the patient’s age, chronic health situation, and organ failures, i.e. respiratory, renal, and cardiovascular) [2]. Since 60% of deaths from acute pancreatitis occur within the first week of illness and have been associated with ARF, much attention has been drawn to the treatment of pulmonary complications, such as pleural effusion, atelectasis, pneumonia, and acute lung injury or acute respiratory distress syndrome [3].

Noninvasive positive pressure ventilation (NPPV) constitutes a therapeutic advance for certain forms of respiratory failure. NPPV is used in ARF with the aim of decreasing the work of breathing and improving gas exchange. Current evidence supports the use of NPPV to avoid endotracheal intubation and its attendant morbidity and mortality in selected patients caused by chronic obstructive pulmonary disease exacerbations or immunocompromised states [4, 5]. Although NPPV is commonly used to treat acute pulmonary edema, data support the use of continuous positive airway pressure alone for this entity [6]. However, the use of NPPV for other short-term applications, such as postoperative respiratory failure, as a means of facilitating weaning from mechanical ventilation or preventing extubation failure, is recommended [7]. NPPV has also been used to treat numerous other causes of ARF, but controlled studies to support these applications are lacking [8].

In this issue of \textit{Respiration}, Jaber et al. [9] conducted a study aimed to evaluate their clinical experience with NPPV in the treatment of acute pancreatitis patients with ARF. Although this is a retrospective observational study, its value is distinct because it is the first study in the literature which reports on the potential efficacy of NPPV in acute pancreatitis patients with ARF. In this study, 15 (54%) of the 28 patients treated with NPPV were not intubated and, as a consequence, had a significantly shorter intensive care unit stay. The more interesting finding is that the failure of NPPV did not depend on the severity of illness or physiologic parameters of gas exchange, but on the presence of bilateral alveolar infiltrates, atelectasis, and abdominal distention. These data emphasize that ARF in patients with acute pancreatitis is a combination of lung disorders (diffuse damage and collapse of alveoli due to acute lung injury/acute respiratory distress syndrome) and a restrictive ventilatory defect due mainly to a cephalad shift of the diaphragm secondary to ascites. Moreover, impairment of diaphragmatic strength and en-
durance capacity may contribute to this ventilatory dys-
function [10]. Despite the theoretical advantage of NPPV, i.e. recruitment of zones of alveolar collapse and mini-
mizing the work of breathing, its routine use in such situ-
ations could not be advised, especially in acute pancre-
atitis patients with multiorgan system failure who are
likely to require prolonged ventilatory support using so-
plicated ventilator modes. However, the early use of
NPPV in mild cases of ARF in acute pancreatitis patients
should be encouraged as a prophylactic mean because
positive end-expiratory pressure prevents alveolar col-
lapse and may improve oxygenation by increasing mean
airway pressure and functional residual capacity.

In conclusion, the study of Jaber et al. [9] could be the
 basis for future prospective randomized studies compar-
 ing the use of NPPV with conventional ventilatory sup-
port in acute pancreatitis patients with ARF. If such a
 trial is initiated, patients should be closely monitored
 and promptly intubated if their condition deteriorates, so
 that unjustified delays in necessary interventions are
 avoided.

References

5 Hilbert G, Gruson D, Vargas F, et al: Noninvasive ventilation in immunosuppressed pa-
6 Bersten AD, Holt AW, Veding AE, et al: Treata-
ment of severe cardiogenic pulmonary edema with continuous positive airway pressure de-
7 Liesching T, Kwok H, Hill N: Acute appli-
cations of non-invasive positive pressure ventila-
9 Jaber S, Chanques G, Sebbane M, Salhi F, Delay J-M, Perrigault P-F, Eledjam J-J: Noninva-
sive positive pressure ventilation in patients