Subject Index

ALV, see Avian leukemia virus
Aneuploidy
 cancer-specific aneuploidies 19, 34
 chromosomal evolution theory of carcinogenesis 24–9
Angiogenesis
 chemokine effects
 CXCR2 expression on tumor cells 173, 174
 ELR-positive CXC chemokine
 angiogenesis promotion 172–174
 tumorigenesis role 174–177
 non-ELR-positive CXC chemokines
 angiogenesis inhibition 177–179
 tumorigenesis reduction 179, 180
 inflammation effects 128
 vascular endothelial growth factor regulation 172, 173
Avian leukemia virus (ALV), features and oncogenic potential 103, 104
BabA2, gastric cancer induction role 72
Bcl-2, schistosomal bladder cancer role 90
Bioluminescence imaging (BLI), metastasis 219, 220
Bladder cancer, Schistosoma infection association
 carcinogen metabolism alterations
 activation 87
 inactivation 87, 88
 epidemiological evidence 84
 experimental evidence 84, 85
 histopathological evidence 85
 inflammation in pathogenesis 85, 86
 microsatellite instability 89, 90
 oncogenes
 Bcl-2 90
 H-ras 90
 tumor suppressor gene defects
 chromosome 9 gene deletions 89
 p53 88, 89
 Rb 89
 urinary tract infection association and cancer risks 86
BLI, see Bioluminescence imaging
BLV, see Bovine leukemia virus
BMDCs, see Bone marrow-derived stem cells
Bone marrow-derived stem cells (BMDCs)
 plasticity 156, 157
 recruitment to tumors 163, 164
 trans-differentiation
 cell fusion 159, 160
 faulty blueprint and malignancy 160, 161, 165
 regulation 157–160
 tumor tissue as blueprint 162, 163
Bone marrow tumor cell hybrids, see Tumor-associated macrophages
Bovine leukemia virus (BLV), features and oncogenic potential 105, 106
Bovine papillomavirus (BPV), features and oncogenic potential 107, 108
BPV, see Bovine papillomavirus
β1,6-Branched oligosaccharides
bone marrow tumor cell hybrids 145–147
human cancer distribution 147, 148
Breast cancer, chemokine receptor
expression 182, 194, 196, 197
CagA, gastric cancer induction role 71, 72
Cancer phenotypes
complexity 22, 34
nonselective phenotypes 22, 23, 34
Canine oral papillomavirus (COPV),
features and oncogenic potential 109
Carcinogens
aneuploidogens 26
non-mutagenic 18, 35
Cell fusion, see Bone marrow-derived stem
cells; Tumor-associated macrophages
Chemokines
angiogenesis
CXCR2 expression on tumor cells
173, 174
ELR-positive CXC chemokines
angiogenesis promotion 172–174
tumorigenesis role 174–177
non-ELR-positive CXC chemokines
angiogenesis inhibition 177–179
tumorigenesis reduction 179, 180
classification 170, 192, 193
CXCR4
breast cancer role 182, 194, 196, 197
mechanisms in metastasis 95, 196
tumor expression 182–185, 194, 195
functional overview 170, 171, 193,
233, 234
infection and cancer 237, 238
matrix metalloproteinase upregulation
180, 181
organ-specific metastasis patterns
182–184, 203
prospects for study in cancer 197,
198, 238
receptor signaling 235, 236
therapeutic targeting 235, 236
Chromosomal evolution theory of
carcinogenesis
aneuploidy generation of new
phenotypes 24–29
clinical significance 35
explanatory value
cancer-specific aneuploidies 34
complex phenotypes 34
karyotype-phenotype variation rates
32, 34
neoplastic latency 32
non-heritability of cancer 31, 32
nonselective phenotypes 34
overview 23, 24
testing against genetic theories of cancer
aneuploidy inherent variability 26–29
carcinogenesis independent of somatic
mutation 29, 30
carcinogens as aneuploidogens 26
Chromosome 9, gene deletions in
schistosomal bladder cancer 89
Coarse vesicles
bone marrow tumor cell hybrids
145–147
human cancer distribution 147, 148
Colony-stimulating factor-1 (CSF-1),
knockout mouse studies of mammary
carcinogenesis 124
Colorectal cancer, Schistosoma infection
association 91
Computed tomography (CT), metastasis
imaging 211, 212
Connexins, see Gap junctional intercellular
communication
COPV, see Canine oral papillomavirus
Cottontail rabbit papillomavirus (CRPV),
oncogenesis studies 111
COX-2, see Cyclooxygenase-2
CRPV, see Cottontail rabbit papillomavirus
CSF1, see Colony-stimulating factor-1
CT, see Computed tomography
CXCR4, see Chemokines
Cyclin-D2, overexpression in gastric cancer
70
Cyclooxygenase-2 (COX-2)
inhibition and cancer prevention 123, 130
overexpression in cancer
gastric cancer 70
non-small-cell lung cancer 175
prostate cancer 236
upregulation in inflammation 128, 129
DNA mismatch repair, *Helicobacter pylori* effects 70

EMT, *see* Epithelial-mesenchymal transition

Endothelial cell
- apoptosis assay in extravasation 206
- tumor interactions 203, 204, 206

Enzootic bovine leukosis virus, *see* Bovine leukemia virus

Epithelial-mesenchymal transition (EMT), cancer cells 140

EPV, *see* Equine papillomavirus

Equine papillomavirus (EPV), features and oncogenic potential 108

Extravasation
- endothelial cell-tumor cell interactions 203, 204, 206
- overview 202
- steps 202

Feline leukemia virus (FeLV), features and oncogenic potential 104, 105

FeLV, *see* Feline leukemia virus

Fluorescence imaging, metastasis 218–220

Gallid herpesvirus 2 (GHV-2), features and oncogenic potential 107

Gap junctional intercellular communication (GJIC)
- adult stem cells 51, 52
- cell growth control and dysfunction in carcinogenesis 51, 52, 57
- oncogenic virus effects 54, 55
- therapeutic targeting 57–59

Gastric cancer
- epidemiology 67, 68

Helicobacter pylori induction
- BabA2 role 72
- CagA role 71, 72
- inflammation role 73
- Mongolian gerbil model 70, 71
- prevention by eradication 74, 75
- VacA role 72
- molecular events in carcinogenesis 70
- multistep carcinogenesis 69, 70

GHV-2, *see* Gallid herpesvirus 2

GJIC, *see* Gap junctional intercellular communication

Glioblastoma, chemokines and angiogenesis 175, 176

Helicobacter pylori
- diseases 66, 67
- DNA mismatch repair effects 70
- epidemiology of infection 68
- gastric cancer induction
- BabA2 role 72
- CagA role 71, 72
- inflammation role 73
- Mongolian gerbil model 70, 71
- prevention by eradication 74, 75
- VacA role 72
- MALT lymphoma induction 75, 76
- Heritability, cancer 17, 18, 31, 32, 36
- HIF-1α, *see* Hypoxia-inducible factor-1α
- HPV, *see* Human papillomavirus
- H-ras, schistosomal bladder cancer role 90
- Human papillomavirus (HPV), infection and cervical cancer 237
- Hypoxia-inducible factor-1α (HIF-1α), chemokine receptor gene expression regulation 184

Inflammation
- angiogenesis regulation 128
- epidemiology of cancer association 236
- gastric cancer induction role 73
- history of study in cancer 232, 233
- schistosomal bladder cancer pathogenesis 85, 86
- tumor microenvironment
 - acute versus chronic inflammation 120, 121
 - cancer role
 - epidemiology studies 121–123
 - experimental studies 123–129
 - tumor promotion and carcinogenesis role 55, 56
 - Virchow’s theories of cancer 8, 11

Initiation, carcinogenesis
- initiated cell features 47–49
- overview 46
Jaagsiekte virus (JSRV), features and oncogenic potential 104
JSRV, see Jaagsiekte virus

Karyotype-phenotype variations
aneuploidy variability in cancer 26–29, 32, 34
rates compared with mutation rates in cancer 19, 35, 36

Latency, carcinogenesis 18, 32, 36
Liver cancer, Schistosoma infection association 91, 92

Macrophages, see Tumor-associated macrophages
Magnetic resonance imaging (MRI), metastasis imaging 213, 214
MALT lymphoma, Helicobacter pylori induction 75, 76
Marek’s disease virus (MDV), features and oncogenic potential 107
Matrix metalloproteinases (MMPs)
inflammatory cell secretion 127, 128
stromal remodeling 119
Matrix metalloproteinases, upregulation by chemokines 180, 181
MCP-1, see Monocyte chemoattractant protein-1
MDV, see Marek’s disease virus
Melanoma, chemokines and angiogenesis 174
Mesenchymal-epithelial transition (MET), metastasis 140
MET, see Mesenchymal-epithelial transition
Metastasis, see also Angiogenesis; Chemokines; Extravasation cascade 201
imaging
animal models
comparison of imaging techniques 224, 225
overview 221, 222
tumor cell implantation models 222–224
clinical imaging 220, 221

overview 209–211
prospects 225, 226
whole-body imaging
bioluminescence imaging 219, 220
computed tomography 211, 212
fluorescence imaging 218–220
magnetic resonance imaging 213, 214
overview 215, 216
positron emission tomography 214, 217, 218
single photon emission computed tomography 214, 217, 218
organ-specific metastasis 203
patterns 192
Microenvironment, see Tumor microenvironment
Microsatellite instability, schistosomal bladder cancer 89, 90
MMPs, see Matrix metalloproteinases
MMTV, see Mouse mammary tumor virus
Monocyte chemoattractant protein-1 (MCP-1), tumor expression 125
Mouse mammary tumor virus (MMTV), oncogenesis studies 110
MRI, see Magnetic resonance imaging
Murine leukemia virus, oncogenesis studies 110, 111
Mutation rate, karyotype-phenotype variation rate comparison in cancer 19, 35, 36
NF-κB, see Nuclear factor-κB
Non-small-cell lung cancer (NSLC)
chemokines and angiogenesis 175
cyclooxygenase-2 overexpression 175
Glasgow Prognostic Score 237
NSLC, see Non-small-cell lung cancer
Nuclear factor-κB (NF-κB), effects on neoplastic cells 126, 127
Oct-4
adult stem cell marker 51
tumor cell expression 57–59
Oligosaccharides, see β1,6-Branches oligosaccharides
Oncogenic viruses, see also specific viruses
animal models
abortive nonlytic infection and cancer development 111, 112
cofactors 111
cottontail rabbit papillomavirus 111
human cancers 112–114
mouse mammary tumor virus 110
murine leukemia virus 110, 111
Rous sarcoma virus 109, 110
simian T cell leukemia virus-I 113, 114
woodchuck hepatitis B virus 113
zoonosis and host-species exchange-associated oncogenesis 114
stem cell theory of carcinogenesis 54, 55
veterinary pathogens
herpesviruses 107
overview 101, 102
papillomaviruses
cattle 108
dog 109
horse 108
oncogenesis mechanisms 107, 108
retroviruses
cat 104, 105
cattle 105, 106
fish 106
poultry 103, 104
sheep 104
Ovarian cancer, chemokines and angiogenesis 174, 175
p53, schistosomal bladder cancer defects 88, 89
PET, see Positron emission tomography
Positron emission tomography (PET), metastasis imaging 214, 217, 218
Progression, carcinogenesis 47
Promotion, carcinogenesis
inflammation role 55, 56, 59
overview 46, 47
Prostate cancer
chemokines and angiogenesis 175
cyclooxygenase-2 overexpression 236
matrix metalloproteinase upregulation by chemokines 181
Rb, schistosomal bladder cancer defects 89
Rous sarcoma virus (RSV), oncogenesis studies 109, 110
RSV, see Rous sarcoma virus
Schistosoma
bladder cancer association
carcinogen metabolism alterations
activation 87
inactivation 87, 88
epidemiological evidence 84
experimental evidence 84, 85
histopathological evidence 85
inflammation in pathogenesis 85, 86
microsatellite instability 89, 90
oncogenes
Bcl-2 90
H-ras 90
tumor suppressor gene defects
chromosome 9 gene deletions 89
p53 88, 89
Rb 89
urinary tract infection association and cancer risks 86
colorectal cancer association 91
diagnosis 83
epidemiology of infection 82, 83
life cycle 81, 82
liver cancer association 91, 92
miscellaneous cancer association 93
prostate cancer association 92, 93
Simian T cell leukemia virus-I (STLV-I), oncogenesis studies 113, 114
Single photon emission computed tomography (SPECT), metastasis imaging 214, 217, 218
Snail, epithelial-mesenchymal transition role 140
SPECT, see Single photon emission computed tomography
Staphylococcus aureus, infection and cancer 237
Stem cell, see Bone marrow-derived stem cells; Stem cell theory of carcinogenesis
<table>
<thead>
<tr>
<th>Stem cell theory of carcinogenesis</th>
<th>Tumor-infiltrating lymphocytes (TILs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult stem cells</td>
<td>prognostic value</td>
</tr>
<tr>
<td>characteristics</td>
<td>recruitment</td>
</tr>
<tr>
<td>gap junctional intercellular</td>
<td>Tumor microenvironment</td>
</tr>
<tr>
<td>communication</td>
<td>inflammation</td>
</tr>
<tr>
<td>markers</td>
<td>acute versus chronic inflammation</td>
</tr>
<tr>
<td>cancer cell comparison with stem</td>
<td>cancer role</td>
</tr>
<tr>
<td>cells</td>
<td>epidemiology studies</td>
</tr>
<tr>
<td>clinical implications</td>
<td>experimental studies</td>
</tr>
<tr>
<td>initiated cells</td>
<td>stroma changes</td>
</tr>
<tr>
<td>oncogenic viruses</td>
<td>Twist, epithelial-mesenchymal transition</td>
</tr>
<tr>
<td>STLV-I, see Simian T cell leukemia virus-I</td>
<td>role</td>
</tr>
<tr>
<td>Streptococcus bovis, infection and cancer</td>
<td>140</td>
</tr>
</tbody>
</table>

| TAMs, see Tumor-associated macrophages | Urinary tract infection, schistosomal bladder cancer risks |
| T cell inflammation and tumor evasion | 86 |

TGF-β, see Transforming growth factor-β	VacA, gastric cancer induction role
TILs, see Tumor-infiltrating lymphocytes	72
TLRs, see Toll-like receptors	Vascular endothelial growth factor
Toll-like receptors (TLRs), tumor expression	172, 173
Transforming growth factor-β (TGF-β), multifunctionality	VEGF, see Vascular endothelial growth factor
Tumor-associated macrophages (TAMs) cancer initiation and progression role	VHL, chemokine receptor gene expression regulation
prognostic value	184
recruitment	Virchow, Rudolf Ludwig Carl
tumor cell fusion	biography 1–4
bone marrow tumor cell hybrids	tumor pathology contributions 4–8
branched oligosaccharides and coarse vesicles	views
gene expression in artificial fusion hybrids	inflammation 8, 11
human cases	microorganism causation of cancer
mechanisms	syphilis 8, 9
prospects for study	tuberculosis 8, 9
history of study	tumor growth and metastasis 9, 11
marker coexpression	Viruses, see Oncogenic viruses
overview	Walleye dermal sarcoma virus (WDSV), features and oncogenic potential 106
	WHBV, see Woodchuck hepatitis B virus
	Woodchuck hepatitis B virus (WHBV), oncogenesis studies 113