Subject Index

Acidosis, see Metabolic acidosis
Activated carbon, sorbents 337
Adipokines
 adipose tissue and systemic inflammation 169
 functions 167–169
 prospects for study in renal patients 171
Adiponectin, functions 168
Advanced glycation end products (AGE)
 animal models of peritoneal dialysis 72, 73
 formation 78, 79, 91
 malnutrition-inflammatory-atherosclerosis syndrome prevention 140
 peritoneal dialysis accumulation 49–51, 77
 receptor, see RAGE
Albumin, serum levels and mortality risks 152, 153
Anemia
 etiology 205
 prevalence in peritoneal dialysis 202
 treatment
 dialysis adequacy 206
 erythropoiesis-stimulating therapy administration route 208, 211
 darbepoetin alfa 207, 208
 epoetin alpha 207, 208
 epoetin beta 207, 208
 expected response 208
 poor response 209, 210
 initiation 203
 iron replacement 206, 207
 nutrition 206
 peritonitis patients 210, 211
 target hemoglobin concentration 203–205
Angiogenesis, see Vascular endothelial growth factor
Angiotensin II, peritoneal dialysis induction and fibrosis 74
Angiotensin-converting enzyme (ACE) inhibitors
 malnutrition-inflammation-atherosclerosis syndrome prevention 141
 mesothelial cell effects 163
 renal function preservation after failed kidney transplant 275
Antibiotics
 malnutrition-inflammation-atherosclerosis syndrome prevention 141, 142
 peritonitis management 183
Aquaporin-1, peritoneum 33, 34, 98, 99
Atherosclerosis, see Malnutrition-inflammation-atherosclerosis syndrome; Vascular calcification
Automated peritoneal dialysis (APD)
 adequacy targets 281, 282, 285, 286
 cyclers
 Home Choice 295
 Home Choice Pro 295, 296
 ideal criteria 300
 overview 294
 PD 100T 298
Continuous cycling peritoneal dialysis, see Automated peritoneal dialysis
Continuous flow peritoneal dialysis (CFPD)
catheter design 313
dextrose as osmotic agent 314
dialysis adequacy 311–313
monitoring 314, 315
rationale 310, 311, 317, 322–324
safety 315
scheduling 323, 324
ultrafiltration control 313, 314
urea kinetics 315, 316
Convection
hemodialysis 1–3
interference with diffusion 6
C-reactive protein (CRP)
cardiac event prediction 153
inflammation marker 136, 145–147
mortality prediction 153, 158
Darbepoetin alpha, see Anemia
Dialysate
cloudy, see Cloudy dialysate
regeneration with sorbents 340
Dialysis fluids
automated peritoneal dialysis
composition 304, 305
on-line preparations 305, 306
bicarbonate-based solutions in bone
disease treatment and prevention 222
combinations of biocompatible fluids
94, 95
glucose-containing biocompatible fluids
Balance 91, 92
Gambrosol Trio 91
Physioneal 92, 93
inflammation prevention 147, 148
low glucose degradation product solutions and biocompatibility 162, 163
malnutrition-inflammation-atherosclerosis
syndrome prevention 140
mesothelial cell phenotype and
peritoneal dialysis response 159, 160
non-glucose-containing biocompatible
fluids
Extraneal 94
Nutrineal 93, 94
pH effects on inflammation 160
Diffusion
hemodialysis 1–3
interference with convection 6
solute transfer in peritoneal dialysis 15, 16
Dry body weight
assessment 105, 106
definition 105
Elderly patients
prevalence of chronic peritoneal dialysis
utilization 240
prospects 244, 245
underutilization of chronic peritoneal
dialysis reasons
compliance 241, 242
dialysis adequacy and nutrition 242, 243
hospitalization 242
infectious complications 242
manual dexterity and neuropsychiatric
function 241
overview 240, 241
patient survival 243, 244
technique survival 243
Eosinophils, cloudy dialysate 190
Epoetin , see Anemia
Extraneal, clinical studies 94, 140
Fetuin, vascular calcification prevention
216, 217
Fibrin, cloudy dialysate 192
Fibrosis, peritoneum
angiotensin II role 74
clinical correlates and mechanisms
178
hydrostatic pressure effects on avascular
matrix 179
inflammation association 176
RAGE role 73, 74, 81
sclerosis etiology and pathogenesis 66, 67
solute clearance effects 179
sub-peritoneal compact zone alterations
176–178
transforming growth factor-β role 73
Gambrosol Trio, clinical studies 91
Glitazone, malnutrition-inflammation-atherosclerosis syndrome prevention 141
Glucose degradation products (GDPs)
 compounds 91
dialysis fluid as source 77
inflammation induction 146
mesothelial cell phenotype and
 peritoneal dialysis response 161
peritoneal membrane accumulation and
effects 50, 51, 78, 79

Heart failure, see Congestive heart failure

Hemodialysis
 blood compartment 4, 5
 congestive heart failure management 132
 convection 1–3, 6
dialysate compartment 5
diffusion 1–3, 6
kidney transplant outcome effects, see
 Kidney transplant
membrane permeability 3, 4
peritoneal dialysis integration in uremia
treatment, see Uremia
solute clearance factors 2
solute diffusivity and sieving 3–5
urea kinetics modeling, see Urea kinetics

Home Choice, automated peritoneal
dialysis cycler 295
Home Choice PRO, automated peritoneal
dialysis cycler 295, 296
Hyaluronan, peritoneal transport effects 162
Hyperphosphatemia, see Phosphate handling

Icodextrin, peritoneal dialysis use
 metabolism 100
overview 45, 94, 97
peritoneal transport with solutions
 clinical studies 101
 high transporter patient use 101, 102
 long-term effects 102
 ultrafiltration 100, 101
structure 100
Inflammation, see also Malnutrition-
inflammation-atherosclerosis syndrome
 adipose tissue and systemic inflammation 169
 etiology in peritoneal dialysis 145, 146, 167
 genetic susceptibility 147
 glucose degradation product induction 146
 markers 136, 145, 153, 167
 pathophysiology in peritoneal dialysis 160, 161
 peritoneal dialysis failure role 156
 prevention in peritoneal dialysis 147–149
 Interleukin-6 (IL-6), gene polymorphisms 47, 158
 Intravital microscopy, peritoneum
 acute effects of peritoneal dialysis fluid
 perfusion 86, 87
 chronic dialysis fluid exposure studies 87, 88
 glucose effects in diabetic rat model 86
 technique 86
Iron, anemia management 206, 207

Kidney transplant
 failure rate 271, 272
patient selection for renal replacement
 therapy mode 261
peritoneal dialysis after failed transplant
 hemodialysis comparison 272, 273
 immunosuppressive therapy 274, 275
 recommendations 275, 276
 residual renal function preservation 274, 275
 technique failure 273, 274
peritoneal dialysis penetration and
 technique survival 260, 261
renal replacement therapy mode effect on
 outcomes
cold ischemia time 261
combined kidney and pancreas
 transplantation after peritoneal
dialysis 256
immediate post-transplant graft
 function 254–256, 262–264
long-term graft and patient survival 256, 257, 266, 267
vascular thrombosis 264–266
Knockout mouse, see RAGE
Kt/V, see Urea kinetics

Leptin, functions 167, 168

Macrophage, adipocyte interactions 169
Malnutrition-inflammation-atherosclerosis (MIA) syndrome
 atherosclerosis 137
 inflammation markers 136
 malnutrition 136, 137
 metabolic acidosis 138
 overview 135
 peritoneal transport 137
 residual renal function 137, 138
 treatment
 angiotensin-converting enzyme inhibitors 141
 antibiotics 141, 142
 biocompatible peritoneal dialysis solutions 140
 glitazone 141
 inflammation
 nutrition 139
 volume control 139
 lifestyle modification 142
 malnutrition
 acidosis 138, 139
 appetite stimulants 139
 dialysis adequacy 138
 nutritional support 138
 nonsteroidal anti-inflammatory drugs 141
 statins 141
 thalidomide 142
 vitamin C 141
 vitamin E 141
Matrix GLA protein (MGA), vascular calcification prevention 216, 217
Mesothelial monolayer
 animal model of peritoneal dialysis effects
 dialysis solution studies of repopulation and repair 57–59
 homeostatic repopulation 57
 preparation 55
 cell phenotype and peritoneal dialysis response 49, 156, 157, 159–161
 glucose degradation product effects 78, 79
Metabolic acidosis
 bicarbonate-based solutions in treatment and prevention 222
 bone metabolism effects in peritoneal dialysis 222
 malnutrition-inflammation-atherosclerosis syndrome 138
Monocytes, cloudy dialysate 190, 191
Multifrequency bioimpedance analysis (MF-BIA), see also Bioimpedance analysis
 dry body weight assessment 105, 106
Nonsteroidal anti-inflammatory drugs (NSAIDs), malnutrition-inflammation-atherosclerosis syndrome prevention 141
Normalized protein equivalent of nitrogen appearance (nPNA), calculation and urea clearance relationship 20, 21
Nutrineal, clinical studies 93, 94, 140

Osteopontin, vascular calcification prevention 216
Overhydration
 causes 113
 diagnosis 112, 113
 peritoneal dialysis complication 111, 112
 prevalence 112
 treatment
 hypertonic glucose 114
 peritoneal ultrafiltration 114, 115
 residual renal function and diuresis effects 114, 115
 sodium restriction 113, 114
Patient On Line (POL), peritoneal function testing 39
PD 100T, automated peritoneal dialysis cycler 298
Peritoneal dialysis, see also Automated peritoneal dialysis; Continuous flow peritoneal dialysis access, see Catheters

animal models
acute models 72
ANIMOD collaboration 70, 71
chronic models 72–74
clinical relevance 71, 72
prospects 74
dialysis solutions, see Dialysis fluids
failure rate 45
initiation 42–46
kidney transplant outcome effects, see Kidney transplant
long-term effects on peritoneal function
glucose degradation product
accumulation 48–51
mesothelium effects, see Mesothelial monolayer
overview 17
sclerosis, see Sclerosis, peritoneum
lymphatic absorption 16
modes 43
solute transfer
convection 16
diffusion 15, 16
solute transport factors
dialysate compartment 6–8
membrane properties 8, 9
microcirculation 9–11
sorbents, see Sorbents
urea kinetics modeling, see Urea kinetics
Peritoneal equilibration test (PET)
chronic peritoneal dialysis findings 157
peritoneal function testing 37, 38, 40
Peritoneum
anatomy 13, 14, 31–33
aquaporin-1 33, 34
cellular immune response 158, 159
fibrosis, see Fibrosis, peritoneum
function 14
interstitium
structure 175
transport role 175, 176
membrane
function testing 17, 37–40
properties 8, 9
vascular bed studies, see Intravital microscopy, peritoneum
microcirculation 9–11, 33
resistance to solute and water transport 14, 15
sclerosis, see Sclerosis, peritoneum
ultrafiltration, see Ultrafiltration, peritoneum
Peritonitis
anemia management 210, 211
catheter removal 184, 185
causes 182, 183
clinical presentation 182
cloudy dialysate, see Cloudy dialysate
epidemiology 181, 182
fungal peritonitis 183, 184
management 183
mortality 181
mycobacterial peritonitis 184
peritoneal dialysis risks 45, 50, 51
sclerosis etiology 66
Personal Dialysis Capacity test (PDC), peritoneal function 39, 40
Personal impedance analyzer (PIA)
applications 332–334
overview 328, 329
study design 329
validation 330, 332
Phosphate handling
calcium balance in peritoneal dialysis 219, 220
calcium balance in peritoneal dialysis 221, 222
control in peritoneal dialysis 220, 221
phosphorus balance in peritoneal dialysis 220, 221
serum levels and mortality risks 214, 215
vascular calcification
impact in dialysis patients 217, 218
pathogenesis 215–217
risks 215
Physioneal, clinical studies 92, 93, 140
Pit-1, vascular calcification role 216
Polymorphonuclear leukocytes, cloudy dialysate 189, 190

RAGE
knockout mouse studies
peritoneal angiogenesis 80, 81
peritoneal fibrosis 81
peritoneal inflammation 80
ligands 79, 80
mesothelial cell effects 78, 79
peritoneal fibrosis role 73, 74
signal transduction 79, 80
structure 79

Red blood cells, cloudy dialysate 191

Residual renal function (RRF)
kidney transplant failure and preservation
with peritoneal dialysis 274, 275
malnutrition-inflammation-atherosclerosis syndrome 137, 138
overhydration treatment effects 114, 115
prognostic value 153

Resistin, functions 168, 169

Sclerosis, peritoneum
animal models 65
etiology and pathogenesis 66, 67
frequency in peritoneal dialysis 63
pathology 63–65
simple sclerosis versus sclerosing peritonitis 62, 63, 67
Shear rate value
blood 4
solute transfer in peritoneal dialysis 16
Sleep Safe, automated peritoneal dialysis cycler 297
Sodium
dietary intake recommendations 108
removal in peritoneal dialysis
mortality relationship 108
target 106, 107
Sorbents
activated carbon 337
dialysate regeneration 340
peritoneal dialysis utilization 340, 341
targets 337
types 337–339

Standardized peritoneal membrane assessment (SPA), peritoneal function testing 38, 39

Statins, malnutrition-inflammation-atherosclerosis syndrome prevention 141

Tenckhoff catheter
development 197
modifications for complication avoidance 197–199

Thalidomide, malnutrition-inflammation-atherosclerosis syndrome prevention 142

Transforming growth factor-β (TGF-β)
glucose degradation product induction 78
peritoneal dialysis induction and fibrosis 73
peritoneal membrane effects 85

Triglycerides, cloudy dialysate 192

Ultrafiltration, peritoneum
automated peritoneal dialysis 282, 283
continuous flow peritoneal dialysis
control 313, 314
fluid loss measurement 31
intraperitoneal hydrostatic pressure 31
lymph flow measurement 31
membrane model 29
net ultrafiltration equation 28
osmosis and fluid loss 29, 30
prospects for study 34, 35
overhydration treatment effects on residual renal function and diuresis 114, 115
overview 16
transport process 98–100

Urea kinetics
blood urea versus blood urea nitrogen 23
clearance in normal kidney 21, 22
continuous flow peritoneal dialysis 315, 316
hemodialysis
overview 22
simplified model
peritoneal dialysis comparison 26

Subject Index 352
principles 23, 24
time-averaged blood urea nitrogen
calculation 25, 26
time requirement to achieve
\[Kt/V = 1 \]
indicators 20
normalized protein equivalent of nitrogen
appearance calculation and urea
clearance relationship 20, 21
peritoneal dialysis
 efficiency and survival 233, 234
overview 22
simplified model
 hemodialysis comparison 26
principles 23, 24
steady state blood urea nitrogen
calculation 25
time requirement to achieve
\[Kt/V = 1 \]
urea clearance needed to achieve
\[Kt/V = 2/\text{week} \]
Uremia, peritoneal dialysis integration in
treatment
 clinical parameters of adequacy 228, 229
education aspects 237
elderly patients, see Elderly patients
full-treatment studies 230–234
institutional barriers 237
modes of peritoneal dialysis 231
mortality studies 237, 238
organizational aspects 227, 228
overview 226, 227
patient preferences 238
prevalence and trends of chronic
 peritoneal dialysis utilization 235–237
program 227
rehabilitation 229
technical issues 229, 230
Vascular calcification
 impact in dialysis patients 217, 218
pathogenesis 215–217
risks 215
Vascular endothelial growth factor (VEGF)
chronic peritoneal dialysis fluid exposure
effects in rats 87, 88
glucose degradation product induction
78, 81
peritoneal membrane effects 85
Vitamin C, malnutrition-inflammation-
atherosclerosis syndrome prevention 141
Vitamin E, malnutrition-inflammation-
atherosclerosis syndrome prevention 141
Water
 aquaporin-1 transport 33, 34, 98, 99
overhydration, see Overhydration
removal target in peritoneal dialysis 106