Subject Index

Adequate intake (AI), dietary reference intake 85
Adiposity, see Body composition
Agouti, epigenetic regulation 141
Air displacement plethysmography (ADP)
 body composition assessment 67, 68, 76, 77
 infants 75
Amino acids
cow's milk formula 191, 193, 203
diarrhea and amino acid metabolism 107
dietary requirements
 adaptation 117, 118
 biological processes 110
determination 110, 111
disease effects 113, 115
dispensable amino acids 110
human milk sufficiency 117
indispensable amino acids 109, 111–114, 116–119
preterm versus term infants 118
prospects for study 115
 glutamine versus glutamate studies 104, 157
oral rehydration solution utilization 106, 107
piglet studies of metabolism
 amino acid utilization and systemic availability 98, 99
energy sources 97, 98
infant model 96
intestinal energy expenditure 97
overview 96, 97
preterm infant studies of metabolism
 first-pass splanchic amino acid utilization and systemic availability 100
 parenteral versus oral amino acid requirements 103, 104
 reduced enteral protein intake effects on systemic protein intake availability 100–102
 tracers 100
Anthropometry, body composition assessment 66, 67
α1-Antitrypsin, milk functions 216
Appetite, see Food intake regulation
Basal metabolic rate (BMR), measurement 20
Bioelectric impedance analysis (BIA), body composition assessment 67, 68
Blood urea nitrogen (BUN), protein intake relationship 59, 60
Body composition
 breast-fed versus formula-fed infants 58, 76, 77
 evaluation
 direct measurements 66
Body composition (continued)
evaluation (continued)
 fat mass determination from lean body mass 67–70
 indirect measurements 66, 67, 76, 77
 infants 70–75
 preterm infants 74
 sex differences 78
Bombesin, food intake regulation 136
Breastfeeding
 amenorrhea duration 167, 171, 172
 blood pressure in later life 17
 energy density of breast milk 36
 growth in breast-fed versus formula-fed infants
 birth to 4 months 53, 54
 4 to 12 months 56–58
 immune effects 62, 63
 maternal weight effects 167, 168
 premature birth milk composition 217
 protection against later obesity, see also Metabolic programming
evidence 5–7
 mechanisms 7–10
 protein content versus cow’s milk 191, 192
 protein intake 121
 recombinant proteins, see
 Recombinant human milk proteins
 recommendations 147, 161, 162
 total energy expenditure effects 34, 35
 volume change over time 173
 weaning, see Complementary food
Calcium, metabolism in adipose tissue 144
Cancer, early high-protein intake risks 131
Caseinoglycomacropeptide
 food intake regulation 139
 sweet whey fraction 193, 194
Celiac disease, breastfeeding protection 171
Cholecystokinin (CCK), food intake regulation 136, 139
Community therapeutic care (CTC), energy-protein malnutrition management 182
Complementary food
 age for introduction
 behavioral development studies 166
 food acceptance 167
 infant growth studies 163, 164
 infection morbidity studies 166
 iron and zinc status considerations 164–166, 170, 174, 175
 recommendations 161–163, 172–174
Cereals 224
 definition 161
 protein:energy ratio
 calculation 148, 149
 developing countries and
 malnutrition 150, 151, 156, 158
 obesity relationship with high
 values 151–153, 157
 rationale for study 148–150
 recommendations 154, 158
 variability 149
 weaning 147, 161
Computed tomography (CT), body composition assessment 68
Cow’s milk formula
 historical perspective 189, 190
 protein content
 human milk comparison 191, 192
 modified sweet whey studies 193–195
 prospects for improvement 198–200
 standards 190
 tryptophan sources 191, 193, 203
 reduced protein formula advantages
 over classic formula
 dehydration and kidney function 196
 growth velocity and adiposity
 196–198, 204
 transforming growth factor-β content 199
Crohn’s disease, transforming growth factor-β containing casein benefits in formula 199
Cystic fibrosis, infant diet 156, 157
Diarrhea
 intestinal amino acid metabolism 107
 rehydration therapy, see Rehydration therapy
Dietary reference intake (DRI)
 adequacy criteria 84, 85
 bioavailability considerations 91, 92
children 88, 89
coefficient of variation of requirements 85
conceptual basis 80, 82, 83
energy and physical activity 89
estimated average requirement 81, 84, 85
infants 87, 88
macronutrients 87, 93, 94
origins 80
tolerable upper intake level barriers to determination 86
extrapolation 86, 92, 93
risk assessment model application to macronutrients 87
risk assessment steps 86
uses 82, 83
Doubly labeled water (DLW), total energy expenditure measurement 20, 21
Dual-energy X-ray absorptiometry (DEXA)
body composition assessment 67, 69, 70, 77
infants 71, 73–75
Energy-protein malnutrition
clinical features 178
community therapeutic care 182
complementary foods in developing countries 150, 151, 156, 158
environmental factors 178
epidemiology 179
food evaluation 179, 180
ready-to-use therapeutic food 182, 186, 187
rehydration therapy 183, 184, 186
therapeutic feeding center 181, 187
Energy requirements, see also Total energy expenditure
children and adolescents 25, 27, 29, 31
components 20
imbalance consequences 21
infants 22, 23, 35, 36
measurement 20, 21
Enterostatin, food intake regulation 136
F100, energy-protein malnutrition management 181, 182, 185
Ferritin, recombinant protein production 209
Food intake regulation
dietary components

carbohydrate 139, 145
dietary component 139, 145
energy 137, 138, 144
epigenetic effects in development 140, 141
fat 139, 140
protein 138, 139
environmental influences 134
estimation 134
neurocircuitry 134, 135
obese versus normal children 144
short-term intake regulation overview 135, 136
postabsorptive signals 137
preabsorptive signals 136
Formula, see Cow’s milk formula

Gastrin-releasing peptide, food intake regulation 136
Ghrelin, food intake regulation 136
Glucagon, food intake regulation 136
Glucagon-like peptides (GLPs), food intake regulation 136, 139
Glucose tolerance, early diet effects 129, 130
Glycemic index, carbohydrate intake considerations 94
Growth, breast-fed versus formula-fed infants
body composition effects 58
head circumference 62, 63
plasma levels
amino acids 55, 56
insulin 55, 56
insulin-like growth factor-1 55, 56, 60–62
premature infants 62
time periods
birth to 4 months 53, 54
4 to 12 months 56–58
Guanosine monophosphate (GMP)
cyclic GMP in human milk 204, 205
milk postprandial response 143
Head circumference, breast-fed versus formula-fed infants 62, 63, 170
Heart rate, total energy expenditure measurement 20, 21
Immunoglobulin A (IgA), breast milk composition 217
Insulin
 breast-fed versus formula-fed infants 55, 56, 198
 high-protein diet response 9, 125
 Insulin-like growth factor-1 (IGF-1)
 breast-fed versus formula-fed infants 55, 56, 60–62, 197, 198
 high-protein diet response 9, 125, 126, 130, 153, 158, 159
Intestine
 fat oxidation 105, 106
 immune function 96
 mucin synthesis 106
 necrotizing enterocolitis 105, 107
 peptide effects on amino acid absorption 106
 piglet studies
 amino acid utilization and systemic availability 98, 99
 energy sources 97, 98
 infant model 96
 intestinal energy expenditure 97
 overview 96, 97
 preterm infant studies
 first-pass splanchnic amino acid utilization and systemic availability 100
 parenteral versus oral amino acid requirements 103, 104
 reduced enteral protein intake effects on systemic amino acid availability 100–102
 tracers 100
Iron status, complementary food considerations 164–166, 170, 174, 175
Kidney
 adaptation to high-protein intake 130, 131
 formula effects 196
α-Lactalbumin, tryptophan content and cow’s milk formula supplementation 191, 193
Lactation, see Breastfeeding
Lactoferrin
 biological activity assays 210, 211
 recombinant protein production 209, 210
Leptin, food intake regulation 136
Lysozyme
 biological activity assays 212
 recombinant protein production 209, 210
Magnetic resonance imaging (MRI), body composition assessment 68
Malnutrition, see Energy-protein malnutrition
Metabolic programming
 age interval for later effects 15, 16, 18
 complementary food protein:energy ratio
 obesity relationship with high values 151–153, 157
 rationale for study 148–150
 EARNEST international research cluster 3, 11
 first-week weight gain 14, 15
 high-protein intake effects 127
 obesity risks
 breastfeeding protection
 evidence 5–7
 mechanisms 7–10
 costs 3
 early-growth association 3–5
 European Childhood Obesity Project 10, 11
 overview 1, 2, 51, 52
 reversal paradox 2
 study design 16, 17
Necrotizing enterocolitis, amino acid studies 105, 107
Neuromedin B, food intake regulation 136
Nitrogen balance, protein requirement measurement 40–42, 48
Obesity, see also Metabolic programming
 breastfeeding and maternal weight effects 167, 168
 food intake regulation in children 144
Oral rehydration solutions, see Rehydration therapy
Oxytocin, breastfeeding response 8
Peptide YY, food intake regulation 136
Preterm infant
 amino acid metabolism
 first-pass splanchnic amino acid utilization and systemic availability 100
Subject Index

parenteral versus oral amino acid requirements 103, 104
reduced enteral protein intake effects on systemic amino acid availability 100–102 requirements 118 tracers 100 body composition 74 breast milk composition 217 Protein-energy malnutrition, see Energy-protein malnutrition Protein:energy ratio (PER)
complementary food calculation 148, 149 developing countries and malnutrition 150, 151, 156, 158 obesity relationship with high values 151–153, 157 rationale for study 148–150 recommendations 154, 158 variability 149 human milk versus formula 37, 200 Protein requirements blood urea nitrogen 59, 60 cow's milk formula, see Cow's milk formula definitions 40 formula content calculation 122, 123, 131 growth response 124, 125, 131 measurement children and adolescents 44–46 infants 44, 48, 122, 123 nitrogen balance 40–42, 48 statistical analysis 40, 47–49 metabolic consequences of different intakes 123–127, 129 protein deposition rates 42–44, 49, 50 renal adaptation to high-protein intake 130, 131 total body potassium relationship with total body protein 48, 49
origin and definition 79, 80 uses 80, 81 Rehydration therapy malnourished children 183, 184 oral rehydration solutions amino acid utilization 106, 107 probiotics 186 sodium composition 130 Sodium
hypernatremic dehydration and formula composition 130 oral rehydration solution composition 130 Somatostatin, food intake regulation 136 Therapeutic feeding center (TFC), energy-protein malnutrition management 181, 187 Thermal effect of feeding (TEF), components 20 Tolerable upper intake level barriers to determination 86 extrapolation 86, 92, 93 risk assessment model application to macronutrients 87 risk assessment steps 86 Total body electrical conductivity (TOBEC)
body composition assessment 67, 68 infants 71, 75 Total body potassium, total body protein relationship 49 Total energy expenditure (TEE)
balancing 19 children and adolescents growth costs 26, 27 physical activity level 27, 36 prediction 25, 26 public health implications 33, 34 infants breastfeeding versus formula feeding 34, 35

229
Subject Index

Total energy expenditure (TEE) (continued)
infants (continued)
growth costs 22
physical activity level 22, 23
prediction 22
measurement 20, 21
Transforming growth factor-β (TGF-β),
cow's milk content 199

Tryptophan
behavioral effects 205
cow's milk formula 191, 193, 203, 223

Vitamin D, supplementation in
breast-fed infants 172

Zinc status, complementary food
considerations 164–166, 174