Molecular Mechanisms of Neonatal Hyperinsulinism

Irina Giurgea a, Christine Bellanné-Chantelot b, Maria Ribeiro c, Laurence Hubert d, Christine Sempoux e, Jean-Jacques Robert d, Oliver Blankenstein f, Kahlid Hussain g, Francis Brunelle d, Claire Nihoul-Fékété d, Jacques Rahier e, Francis Jaubert d, Pascale de Lonlay d

a INSERM U654 and Department of Genetics, Hôpital Henri Mondor, Créteil; b Department of Biology, Hôpital Saint-Antoine, Paris; c ERM 0205 INSERM-CEA, Service Hospitalier Frédéric Joliot, DSV, DRM, Orsay; d Departments of Pediatrics, Radiology, Surgery and Pathology, Hôpital Necker-Enfants Malades, Paris, France; e Department of Pathology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium; f Departments of Pediatrics, Humboldt-Universität zu Berlin, and Charité CVK OHC Kinderklinik, Berlin, Germany; and g Departments of Pediatrics, Great Ormond Street Children’s Hospital NHS Trust and Institute of Child Health, London, UK

Key Words
Neonatal hyperinsulinism, molecular mechanisms · Hypoglycaemia · Diffuse insulin hypersecretion · Focal adenomatous hyperplasia

Abstract
Congenital hyperinsulinism (CHI), characterized by profound hypoglycaemia related to inappropriate insulin secretion, may be associated histologically with either diffuse insulin hypersecretion or focal adenomatous hyperplasia, which share a similar clinical presentation, but result from different molecular mechanisms. Whereas diffuse CHI is of autosomal recessive, or less frequently of autosomal dominant, inheritance, focal CHI is sporadic. The most common mechanism underlying CHI is dysfunction of the pancreatic ATP-sensitive potassium channel (K + \text{ATP}). The two subunits of the K + \text{ATP} channel are encoded by the sulfonylurea receptor gene (SUR1 or ABCC8) and the inward-rectifying potassium channel gene (KIR6.2 or KCNJ11), both located in the 11p15.1 region. Germ-line, paternally inherited, mutations of the SUR1 or KIR6.2 genes, together with somatic maternal haploinsufficiency for 11p15.5, were shown to result in focal CHI. Diffuse CHI results from germ-line mutations in the SUR1 or KIR6.2 genes, but also from mutations in several other genes, namely glutamate dehydrogenase (with associated hyperammonaemia), glucokinase, short-chain L-3-hydroxyacyl-CoA dehydrogenase, and insulin receptor gene. Hyperinsulinaemic hypoglycaemia may be observed in several overlapping syndromes, such as Beckwith-Wiedemann syndrome (BWS), Perlman syndrome, and, more rarely, Sotos syndrome. Mosaic genome-wide paternal isodisomy has recently been reported in patients with clinical signs of BWS and CHI. The primary causes of CHI are genetically heterogeneous and have not yet been completely unveiled. However, secondary causes of hyperinsulinism have to be considered such as fatty acid oxidation deficiency, congenital disorders of glycosylation and factitious hypoglycaemia secondary to Munchausen by proxy syndrome.

Copyright © 2006 S. Karger AG, Basel

KARGER
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

© 2006 S. Karger AG, Basel
0301–0163/06/0666–0289$23.50/0
Accessible online at: www.karger.com/hre

Dr. Irina Giurgea
INSERM U654 and Department of Genetics, Hôpital Henri Mondor
51, avenue du mail de Lattre de Tassigny
FR–94010 Créteil Cedex (France)
Tel. +33 1 4981 6871, Fax +33 1 4981 2842, E-Mail giurgea@im3.insERM.fr
Introduction

Congenital hyperinsulinism (CHI, MIM 256450) related to inappropriate insulin secretion is the most common cause of hypoglycaemia in newborns and infants. Hypoglycaemia revealed by seizures in about half of the cases is often severe with secondary brain damage [1–4]. Although the clinical presentation of hyperinsulinism is similar, it may result from different molecular causes [5–10].

The diagnostic criteria for CHI include recurrent fasting and fed hypoglycaemia (<3 mmol/l) with inadequate insulin plasma levels requiring high rates of intravenous (IV) glucose (>10 mg/kg/min) and increased plasma glucose after IV glucagon injection. In the absence of clearly abnormal insulin levels during the hypoglycaemic episode, a 4- to 6-hour fasting test in search of inappropriately low plasma levels of ketone bodies, free fatty acids, and branched chain amino acids, may be helpful. Mild hepatomegaly is common and does not prevent the diagnosis of hyperinsulinism. Facial dysmorphism with high forehead, large and bulbous nose with short columella, smooth philtrum and thin upper lip is frequently observed in all types of hyperinsulinism [11]. Epilepsy seems to be frequent in patients with hyperinsulinism associated to hyperammonaemia and is not explained by hypoglycaemia only [12]. However, mostly, hypoglycaemia is the only symptom.

The onset of hypoglycaemia is reported to occur in the neonate or after the first month of life [13–15]. In the neonatal period, hypoglycaemia is severe (often <1 mmol/l) and occurs within the first 72 h of life. The majority of affected newborns with severe CHI are macrosomic at birth. Other symptoms are: abnormal movements, tremulousness, hypotonia, cyanosis, or hypothermia. In some cases, hypoglycaemia is discovered by routine measurement of blood glucose. CHI patients presenting with hypoglycaemia later in infancy (1–12 months of age) have a similar clinical presentation, but usually require lower rates of IV glucose to maintain glycaemia within normal ranges.

CHI may be associated histologically with two major forms: diffuse insulin hypersecretion or focal adenomatous hyperplasia. Both forms share a similar clinical presentation. Histologically, focal adenomatous hyperplasia is a small poorly delineated lesion composed of normally structured hyperplastic islets (β cells surrounded by non-β cells), separated by few exocrine acini, thus maintaining a normal lobular pancreatic architecture [16]. A high proliferation rate of β cells was shown inside the lesion, whereas in the normal adjacent pancreas, small resting islets, made of packed endocrine cells with scanty cytoplasm, exhibit no sign of proliferation [2]. Furthermore, loss of the maternally expressed CDKN1C gene within the lesion is evidenced by the absence of immunohistochemical staining of the corresponding protein, in contrast to normal surrounding islets [16, 17]. These features differ from true adult-type pancreatic adenoma or insulinoma which are microscopically less well distinguished from adjacent pancreatic tissue, sometimes extending between exocrine acini or including normal islets. Outside insulinomas, islets show regular nuclei and normally abundant cytoplasm and are thus very different from those located in non-lesional pancreas of focal forms [16, 17]. Diffuse hyperinsulinism is characterized histologically by the presence of β cells with a particularly abundant cytoplasm and a large nucleus in the islets throughout the whole pancreas [18–21]. These features are interpreted as a morphological evidence for the continuous hyperfunction of β cells [18, 19, 22].

Clinical features and preoperative classical radiology of the pancreas, including sonography, CT scan and MRI, cannot discriminate between focal and diffuse disease. Therefore, pancreatic venous sampling and pancreatic arterial calcium stimulation were, until recently, the only preoperative procedures available for localizing the site of insulin secretion [23, 24]. Pancreatic venous sampling allows to collect venous blood samples from the entire pancreas (head, isthmus, body and tail) for measurements of plasma glucose, insulin and C-peptide levels [23]. Patients with a focal lesion have high plasma insulin and C-peptide levels in one or more consequent samples, and low plasma insulin and C-peptide levels in the remaining pancreatic samples. By contrast, patients with diffuse hyperinsulinism have high plasma insulin and C-peptide levels in all pancreatic samples [23, 24]. A new accurate non-invasive technique, [18F]-fluoro-L-dopa whole-body PET, has only recently become available to detect hyperfunctional pancreatic islets. Abnormal focal uptake of [18F]-fluoro-L-dopa is observed in the pancreas of patients with a focal lesion, while a diffuse uptake of the radiotracer is observed over the whole pancreas for patients with diffuse insulin secretion [25, 26]. PET scanning with 18F–dopa is to date the most employed method to distinguish between focal and diffuse CHI.

The treatment of hyperinsulinemic hypoglycaemia must be rapid and aggressive in order to prevent irreversible brain damage. In neonates, this often necessitates central venous access and continuous oral feeding using
a nasogastric tube. Glucagon (1–2 mg/day given as a con-
tinuous subcutaneous infusion) can be added if blood
levels remain unstable despite a high glucose in-
fusion rate.

Specific treatments must also be started concomitantly:
diazoxide at 15 mg/kg/day in neonates and 10 mg/kg/
day in infants, given orally 3 times a day. Diazoxide ef-
cicacy is defined as a normalization of blood glucose lev-
els (>3 mmol/l) measured before and after each meal in
patients with physiological feeding and after stopping IV
glucose and any other medications for at least 5 consecu-
tive days. Diazoxide is usually effective in the infantile
form, but most patients with the neonatal form are resis-
tant to this treatment [27]. In case of non-responsiveness
to diazoxide, octreotide can be tried at 10–50
/H9262
g/d, given
either in 3–4 subcutaneous (SC) injections or by SC
pump. Other drugs such as calcium-channel blockers
(e.g. nifedipine) have been proposed, but are rarely effi-
cient.

Hyperinsulinism associated with hyperammonaemia
(HA/Hi syndrome) is usually amenable to diazoxide or
a restricted protein diet (limiting the leucine intake to
200 mg per meal).

Secondary causes of hyperinsulinism should also be
excluded, namely fatty acid oxidation defects (acylcarni-
nine profile), congenital disorders of glycosylation (trans-
ferrin glycosylation), and Munchausen syndrome by
proxy [28], as the treatment will be different. Figure 1
contains a decision tree that may be useful for the clinical
management of patients with CHI.

Patients resistant to medical treatment require pan-
createctomy: focal CHI can be definitively cured by a lim-
ited pancreatectomy, while diffuse CHI requires a subto-
tal pancreatectomy, with a high risk of secondary diabe-
tes mellitus. Intraoperative histological analysis is
performed to provide confirmation of the findings of
pancreatic catheterization or PET scanning and to guide
the limits of pancreatic resection, in patients suspected of
focal CHI.

**Molecular Basis**

The most common mechanism underlying CHI is
dysfunction of the pancreatic ATP-sensitive potassium
channel ($K_{ATP}^+$). The two subunits of the $K_{ATP}^+$ channel
are encoded by the sulfonylurea receptor gene ($SUR1$ or

---

**Fig. 1.** Decision tree for clinical management of patients with CHI. Hyperam-
monaemia is found in HA/Hi syndrome. Methylation abnormalities at 11p15 region
can be found in syndromic forms of hyperinsulinism, namely in BWS. Secondary
causes of hyperinsulinism such as fatty acid oxidation defects detected by acylcar-
nitine profile, and congenital disorders of glycosylation detected by transferrin gly-
cosylation studies have to been excluded. $NH_3 =$ Ammonaemia; acylcarn. = acylcar-
nitine profile; transferrin = transferrin glycosylation; meth. 11p15 = detection of
methylation abnormalities at 11p15 region; dom. = autosomal dominant inheri-
tance.
throughout the nates. More than 100 distinct mutations, distributed C H I , w h a t e v e r f o c a l o r d i f f u s e C H I , esp e c i a l l y i n n e o-

gion. K + ATP channels are open in unstimulated the voltage-gated Ca 2+ channels, allows the influx of ex-

centrations decreases, and leads to closing of K + ATP channels and depolarization of the cell membrane. This opens the 

upsize of extracellular calcium, and the exocytosis of insulin. CHI 'channelopathies' are due to inhibiting S U R 1 or K I R 6.2 mutations. These mutations can lead to type 1 channelopathy without channel activity, or to type 2 channelopathy with a decreased channel activity due either to defective function, or to decreased number of channels. Heterogeneous outcome is observed for the same mutation as some cells manifest a type 1 channelopathy, others a type 2 channelopathy, and other mutated cells have a normal activity of the potassium channel [29, 30]. This observation could be explained by interactions with modulator genes, exogenous factors, or variable degree of penetrance of the mutation.

Mutations of S U R 1 gene are responsible for 50–60% of CHI, whatever focal or diffuse CHI, especially in neo-

ates. More than 100 distinct mutations, distributed throughout the S U R 1 gene, have already been described [31–34]. Mutations of K I R 6.2 gene are less frequent and are responsible for 10–15% of CHI. Less frequent mechanisms of CHI, observed especially in infants, and responsible for diffuse CHI, the 'metabolopathies', are due to enzyme deficiencies of glutamate dehydrogenase (G D H ), glucokinase (G K ), short-

chain L-3-hydroxyacyl-CoA dehydrogenase (S C H A D ) or to insulin receptor dysfunctions (fig. 2). In contrast to patients with 'channelopathies', those with 'metabolic' CHI are sensitive to diazoxide (which acts on the potas-

sium channel), as K + ATP channels are functional in these patients.

**Modes of Inheritance**

**Sporadic Forms**

Recent estimates from France, Japan and the United States suggest that 40–65% of all CHI patients have a fo-

cal form [31, 35, 36]. Focal CHI has been shown to result from a paternally inherited mutation in the S U R 1 or K I R 6.2 genes and loss of the maternal 11p15 allele (loss of heterozygosity, LOH). LOH is a somatic event restricted to the pan-

creatic lesion which leads to tumour inception through dis-

ruption of the balance of expression of several imprint-

ed genes located in the 11p15.5 region and controlling cell growth [37]. Because of the somatic character of LOH, focal CHI is a sporadic event. In patients with focal CHI, the pancreas lesion is generally unique with a size of <10 mm in the largest aspect [16, 18–20, 38–40]. Rarely, patients with multiple-focal lesions or giant lesions have been reported [38]. The underlying molecular mechanism of these forms is similar to the one described in the small solitary forms but the onset during the pan-

creas embryogenesis may be different: earlier for the gi-

ant forms and multiple-hit for the multiple-focal forms [41].

Patients with de novo germ-line mutations in genes responsible for diffuse forms of CHI may be considered initially as sporadic cases.

**Autosomal Recessive Inheritance**

In the autosomal recessive form, the most frequently involved genes are S U R 1 [6] or K I R 6.2 [7, 42] and, less commonly, the short-chain L-3-hydroxyacyl-CoA dehydrogenase (S C H A D ) gene [10].

**Autosomal Dominant Inheritance**

The second most common form of CHI involving the G L U D 1 gene, coding for GDH, is often associated with hyperammonaemia (HI/H A syndrome) [43]. Dominantly expressed missense mutations of G L U D 1 gene result in a gain of function of GDH, a mitochondrial matrix en-

zyme. This induces an increase of the oxidative deamina-

tion of glutamate in α-ketoglutarate and ammonium, re-

sponsible for increased Krebs cycle activity, which re-

sults in an increased ATP/ADP ratio, and consequently activation of K + ATP channel with subsequent cell depolar-

ization and insulin release [9].

Dominantly expressed G K mutations are a rare cause of CHI [8]. They result in a gain of function by increased affinity of GK for glucose leading to inappropriate insu-

lin secretion. These mutations are remote from the glu-

cose-binding site and suggest an allosteric regulation de-

fect.

Less frequently than in the recessive (diffuse CHI) or sporadic (focal CHI) form, S U R 1 gene can also be in-

volved in dominant CHI. In this case, the histological le-

sion is diffuse.

The insulin receptor (I N S R ) gene was recently impli-

cated in a dominant form of hyperinsulinemic hypogly-
Patients presented with postprandial as well as fasting hyperinsulinemic hypoglycaemia associated with resistance to insulin [44].

Exercise-induced hyperinsulinism is a novel, autosomal dominant form of CHI, which has been identified in two families. The patients suffer from hypoglycaemic symptoms only when performing strenuous physical exercise [45]. The underlying mechanism of hypoglycaemia is unknown, so far.

**Syndromic Forms**

Finally, hyperinsulinemic hypoglycaemia can be 'syndromic' as observed in several overlapping syndromes, such as Beckwith-Wiedemann syndrome (BWS) [46],

---

Molecular Mechanisms of Neonatal Hyperinsulinism

Horm Res 2006;66:289–296

---

**Fig. 2.** Schematic representation of the regulation of insulin secretion by glucose in pancreatic β cells. GLUT2 catalyses glucose uptake by β cells. The phosphorylation of glucose to glucose-6-phosphate by glucokinase initiates β-cell glucose metabolism. Leucine, one of the most potent amino acids in stimulating insulin secretion, acts indirectly as a positive allosteric effector of glutamate dehydrogenase increasing the rate of oxidation of glutamate to α-ketoglutarate. Both glucose and leucine interact with the Krebs cycle activity resulting in ATP synthesis. This increase of the ATP/ADP ratio triggers the closure of the potassium channel, leading to depolarization of the cell membrane, influx of extracellular calcium, and release of insulin from storage granules. The several pathways involved in insulin secretion explain the modality of effectiveness of medical cures such as diazoxide, somatostatin, and protein-restricted diet. GLUT2 = Glucose transporter 2; G6P = glucose-6-phosphate; GK = glucokinase; GDH = glutamate dehydrogenase; α-KG = α-ketoglutarate; Krebs = Krebs cycle; e− = mitochondrial respiratory chain; SUR1 = sulfonylurea receptor; KIR6.2 = inward-rectifying potassium channel are the subunits of potassium channel.

GLUT2 = Glucose transporter 2; G6P = glucose-6-phosphate; GK = glucokinase; GDH = glutamate dehydrogenase; α-KG = α-ketoglutarate; Krebs = Krebs cycle; e− = mitochondrial respiratory chain; SUR1 = sulfonylurea receptor; KIR6.2 = inward-rectifying potassium channel are the subunits of potassium channel.
Perlman syndrome [47] and, more rarely, in Sotos syndrome [48]. BWS results from several identified genetic and epigenetic molecular events including paternal isodisomy [49], abnormal methylation of IGF2/H19 [50], chromosomal aberrations involving the 11p15 region [51], and CDKNIC mutation [52]. Hypoglycaemia in BWS patients has been associated with paternal uniparental disomy of 11p15 rather than other genetic abnormalities [46], but the pathophysiological mechanism leading to hyperinsulinic hypoglycaemia is still unclear as no evidence for duplication of INS, HRAS1 and IGF2 [53] or overexpression of the INS and IGF2 genes [54] was found. A case of BWS with CHI and mosaic genome-wide paternal isodisomy has been reported [55], and we may suggest that mosaic and genome-wide paternal isodisomy are likely to be underdiagnosed in patients with clinical signs of BWS or CHI.

The genetic mechanism of CHI and the most frequent modes of inheritance are summarized in table 1.

### Table 1. Genetic mechanisms of congenital hyperinsulinism

<table>
<thead>
<tr>
<th>Mode of inheritance</th>
<th>Histological form</th>
<th>Genetic mechanism or the involved gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadic</td>
<td>Focal</td>
<td>Paternal inherited SUR1 or KIR6.2 mutation + loss of the 11p15 maternal allele in the pancreatic lesion de novo mutation</td>
</tr>
<tr>
<td></td>
<td>Diffuse</td>
<td>SUR1, KIR6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCHAD</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td>Diffuse Other</td>
<td>SUR1, KIR6.2, GLUD1, GK, INSR</td>
</tr>
<tr>
<td>Autosomal dominant</td>
<td>Diffuse Other</td>
<td>Mosaics Unknown</td>
</tr>
</tbody>
</table>

### Conclusion

CHI involves widely heterogeneous genes and mechanisms. Other genes encoding transcription factors as well as genes implicated in β-cell metabolism are probably involved. Furthermore, CHI association with disorders known to be related to imprinted regions of the human genome should be the focus of further in-depth diagnostic efforts.

### References

Molecular Mechanisms of Neonatal Hyperinsulinism

Horm Res 2006;66:289–296


