Emerging Viral Diseases of Southeast Asia
Library of Congress Cataloging-in-Publication Data
Emerging viral diseases of Southeast Asia / volume editor, Sunil K. Lal.
p. ; cm. – (Issues in infectious diseases, ISSN 1660-1890 ; v. 4)
Includes bibliographical references and index.
ISBN-10: 3-8055-8175-0 (hardcover : alk. paper)
DNLM: 1. Communicable Diseases, Emerging–Asia, Southeastern. 2. Virus Diseases–Asia, Southeastern. 3. Severe Acute Respiratory Syndrome–Asia, Southeastern. WC 500 E525 2007]
RA644.V55E442 2007
362.196'9200959–dc22
2006022529

Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus.

Disclaimer. The statements, options and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the book is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 2007 by S. Karger AG, P.O. Box, CH–4009 Basel (Switzerland)
www.karger.com
Printed in Switzerland on acid-free paper by Reinhardt Druck, Basel
ISSN 1660–1890
ISBN 3–8055–8175–0
Contents

VII Foreword
Lal, S.K. (New Delhi)

1 The Singapore Contribution in the Battle against the Severe Acute Respiratory Syndrome
Fielding, B.C.; Tan, Y.-J. (Singapore)

23 Avian Influenza in Thailand
Puthavathana, P.; Auewarakul, P.; Buranathai, C.; Aungtragoolsuk, N.; Kitphati, R.; Chotpithayasunondh, T. (Bangkok)

35 Emerging Viral Diseases of Fish and Shrimp
Wang, M.; Lin, X.; Ma, G.; Bai, X. (Qingdao)

59 Avian Influenza H5N1 Virus: An Emerging Global Pandemic
Lal, S.K. (New Delhi); Chow, V.T.K. (Singapore)

78 Henipaviruses: New Threats for Southeast Asia and Australia
McCormack, J. (South Brisbane); Smith, G. (Coopers Plains)

94 Ross River Virus: An Arthritogenic Alphavirus of Significant Importance in the Asia Pacific

112 Emerging and Re-Emerging Infectious Diseases in Our Global Village
Heymann, D.L. (Geneva)
125 The Role of a Pathology Laboratory in SARS and Other Emerging Infections
Nicholls, J.; Peiris, J.S.M. (Hong Kong, SAR)

136 The Fight against Emerging Viral Diseases in Asia
Lam, S.K. (Kuala Lumpur)

144 Author Index

145 Subject Index
Infectious viral diseases have always afflicted mankind and always will. New infectious diseases emerge as microbes adapt to new hosts and new environments. Asia has been a breeding ground for viruses where severe epidemics of dengue hemorrhagic fever (1954) and a variety of flu pandemics have originated such as the Asian flu (H2N2; 1957), the Hong-Kong flu (H3N2; 1968), and the Russian flu (H1N1; 1977). During the last 10 years, however, very dangerous viruses have repeatedly originated from Southeast Asia, e.g. the avian flu (H5N1) in Hong-Kong (1997), Nipah virus encephalitis in Malaysia (1998), and, above all, the SARS outbreak from Southern China (2002).

An estimated 75% of emerging infectious diseases in humans are zoonotic in origin. Microbes usually evolved to reach an equilibrium with their natural hosts without causing any disease. This microbe-host equilibrium which is a delicate balance, gets disturbed by economic development and land use leading to perturbations in the natural microbial environment, human demographics and behavior, and international travel and commerce thus creating an imbalance and increased possibilities to trigger the emergence of new infectious diseases. Microbes possess the ability to adapt naturally to their hosts, their environment, and to new ecological niches offered to them as humans encroach upon their territory. They are also adept at circumventing efforts to suppress them, whether as a result of internal host pressures such as innate and adaptive immune responses or in reaction to external pressure applied by antibiotics, antivirals, or vaccines. In the face of our efforts to eliminate them, microbes almost always adapt successfully, thwarting our efforts to destroy them. A prototypic example of the constant struggle between microbes and man is the evolutionary success
of influenza viruses as they adapt to their many hosts, including humans. Similarly, the destruction of rainforests has led to exposure of humans to viruses and other microbes that otherwise would not have occurred, for example, an outbreak of Nipah virus in Malaysia occurred when pigs penned near fruit orchards contracted the virus from the droppings of bats, whose habitat had shifted as a result of deforestation. The infected pigs readily transmitted the virus to their handlers.

Also, the success viruses have gained in the emergence of new occurrences may be attributed to the development of large industry poultry flocks increasing the risks of epizootics, dietary habits, economic and demographic constraints, and negligence in the surveillance and reporting of the first cases. New viruses do not emerge against a background of established infectious diseases and host-microbe interactions that have existed for centuries. For example, the newly emerging infectious diseases like Severe Acute Respiratory Syndrome (SARS), Nipah virus encephalitis, Lassa fever, and most recently, human disease caused by the H5N1 strain of avian influenza virus were at some point emerging diseases that had never been observed previously in human populations but are now slowly becoming a part of the background infectious disease burden. Infectious diseases that have previously occurred in humans also can re-emerge or resurge in different forms or in different environments as has been exhibited by the West Nile; monkeypox, and dengue virus. The SARS virus although contained, poses a similar threat since it is still at large in its zoonotic hosts viz., bats, civet cats and pigs.

Today the world faces a threat of a much more unpredictable pandemic influenza, caused by the emergence of a new strain of influenza virus to which humans have never been exposed. Pandemics occur when a new influenza virus variant emerges to which the human population has no immunity. Influenza A viruses are most dangerous to humans because of their wide host range, their rapid mutation rate, and their capacity to cause serious disease. Over the past 2 years, the risk of an influenza pandemic has grown as an exceptionally virulent form of the H5N1 avian influenza virus and has circulated widely among domestic poultry and wild migratory birds in Asia, Europe, the Middle East, and Africa. As of February 9, 2006, the virus also has infected more than 166 people since late 2003, of whom half have died (WHO).

Whether the virus develops into a strain capable of spreading from human to human in an efficient and sustained manner, thereby triggering a human pandemic, will depend on how the virus evolves and adapts to new hosts. Since its re-emergence in Southeast Asia in 2003, the virus has appeared in poultry in at least 18 countries and in multiple species of migratory birds, pigs, tigers, and leopards. As the virus has infected chickens and other domestic poultry, it has become increasingly virulent and has achieved the capability of jumping
species to humans and to other animals with lethal consequences. Most alarm-
ingly, the virus now seems to be transmitted from poultry back to migratory
birds and, for the first time, is causing disease in the migrating bird population.
This unprecedented pattern of transmission is an important reason why public
health officials are watching the H5N1 virus carefully because it is a strain with
the potential to cause the next influenza pandemic.

Compared to 1918, we are much better equipped scientifically. We have
the tools to monitor genetic sequences of influenza viruses as they evolve in
both humans and birds. We also have the capacity to develop and manufacture
countermeasures against new strains of influenza. As we prepare for the possi-
bility of the next pandemic influenza, it will be important to optimize the use of
available public health measures and scientific tools and technologies.

Ongoing efforts in basic biomedical research are also critical to the com-
prehensive pandemic preparedness effort, including studies to understand viral
pathogenesis, the ongoing search for new antivirals, new platforms and targets
for vaccines, such as recombinant DNA and vector approaches, as well as
improved vaccine manufacturing methods.

It is essential to have a multipronged approach including surveillance, pub-
lic health measures, and biomedical research – with the ability to isolate infec-
tious agents, decipher pathogenic mechanisms, and develop appropriate
diagnostics, therapies, and vaccines – are all critical components of a multi-
pronged response to emerging and re-emerging infectious diseases, including
both seasonal and pandemic influenza to develop effective antiviral drug stock-
piling and vaccine development and distribution.

Sunil K. Lal, New Delhi