Immune Response and the Eye
Chemical Immunology and Allergy

Vol. 92

Series Editors

Johnnes Ring, Munich
Luciano Adorini, Milan
Claudia Berek, Berlin
Kurt Blaser, Davos
Monique Capron, Lille
Judah A. Denburg, Hamilton
Stephen T. Holgate, Southampton
Gianni Marone, Napoli
Hirohisa Saito, Tokyo
Immune Response and the Eye

2nd, revised edition

In Memoriam J. Wayne Streilein

Volume Editors

Jerry Y. Niederkorn, Dallas, Tex.
Henry J. Kaplan, Louisville, Ky.

25 figures, 7 in color, and 12 tables, 2007
Chemical Immunology and Allergy
Formerly published as 'Progress in Allergy' (Founded 1939)
continued 1990–2002 as 'Chemical Immunology'

Jerry Y. Niederkorn
Departments of Ophthalmology and Microbiology
U.T. Southwestern Medical Center
Dallas, Tex., USA

Henry J. Kaplan
Department of Ophthalmology & Visual Science
University of Louisville
Louisville, Ky., USA

Vol. 73 (1st edition)
Immune Response and The Eye
Editor: J. Wayne Streilein, Boston, Mass., USA

Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus.

Disclaimer. The statements, options and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the book is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 2007 by S. Karger AG, P.O. Box, CH–4009 Basel (Switzerland)
www.karger.com
Printed in Switzerland on acid-free paper by Reinhardt Druck, Basel
ISSN 1660–2242
Contents

XVII Abbreviations used in this book

Introduction

1. **Rationale for Immune Response and the Eye**
 Niederkorn, J.Y. (Dallas, Tex.); Kaplan, H.J. (Louisville, Ky.)

4. **Anatomy and Function of the Eye**
 Kaplan, H.J. (Louisville, Ky.)

 4. Abstract
 4. Vision
 6. Development of the Eye
 7. The Anatomy of the Eye
 9. Anatomy of Immune Privilege
 10. References

11. **Regional Immunity and Immune Privilege**
 Kaplan, H.J. (Louisville, Ky.); Niederkorn, J.Y. (Dallas, Tex.)

 11. Abstract
 13. Mucosal Immune System
 14. Immune Privilege of the Brain
 15. Immune Privilege at the Maternal/Fetal Interface
 16. Ocular Immune Privilege
 18. Biologic Importance of Ocular Immune Privilege
 18. Establishment of Ocular Immune Privilege
 19. Immunologic Ignorance
 19. Peripheral Tolerance of Ocular Antigens

V
Physiology of Immune Response and the Eye

27 The Induction of Anterior Chamber-Associated Immune Deviation
Niederkorn, J.Y. (Dallas, Tex.)

27 Abstract
28 The Induction of Anterior Chamber-Associated Immune Deviation
28 Ocular Phase of Anterior Chamber-Associated Immune Deviation
30 Thymic Phase of Anterior Chamber-Associated Immune Deviation
31 Splenic Phase of Anterior Chamber-Associated Immune Deviation
33 Role of the Sympathetic Nervous System in Anterior Chamber-Associated Immune Deviation
33 Conclusions
33 References

36 Anatomy and Immunology of the Ocular Surface
Knop, E. (Berlin); Knop, N. (Hannover)

36 Abstract
37 Anatomy of the Immune System at the Ocular Surface and Adnexa
37 Cornea
37 Conjunctiva
37 Morphology
38 Diffuse Leukocyte Subpopulations
39 Follicles
39 Lacrimal Gland
39 Lacrimal Drainage System
40 Tear Film and Integrated Proteins
40 Mucosal Immune Defense Mechanisms at the Ocular Surface
42 Innate Immunity at the Ocular Surface
42 Function of the Innate Immune System
42 Innate Effector Cells at the Ocular Surface
42 Toll-Like Receptors
43 Secreted Antimicrobial Peptides
43 Specific Adaptive Immunity at the Ocular Surface
43 Function of the Adaptive Immune System
44 Uptake of Antigen at the Ocular Surface
44 Immune Regulation in Follicular Lymphoid Tissue
44 Diffuse Lymphoid Tissue with Effector Cells
45 Defense Strategies: One Does Not Fit for All at the Ocular Surface
45 The Immune Privilege Approach
46 The Pro-Inflammatory Approach
47 Acknowledgments
47 References
50 Immune Privilege and Angiogenic Privilege of the Cornea
Cursiefen, C. (Erlangen/Boston, Mass.)

50 Abstract
51 Common Phenomenology of Corneal Immune and Angiogenic Privilege
52 Common Molecular Mechanisms of Corneal Immune and Angiogenic Privilege
53 Corneal Immune Privilege
53 Corneal Angiogenic and Lymphangiogenic Privilege
54 Immunomodulatory Effects of Antihem- and Antilymphangiogenic Therapies in the Cornea
56 References

58 Corneal Antigen-Presenting Cells
Hamrah, P.; Dana, M.R. (Boston, Mass.)

58 Abstract
58 Introduction and Historical Overview
59 Resident Antigen-Presenting Cells in the Normal Uninflamed Cornea
59 Dendritic Cells, Langerhans Cells and Dendritic Cell Precursors
60 Epithelial Langerhans Cells
61 Corneal Stromal Dendritic Cells
62 Dendritic Cell Precursors
62 Macrophages
63 Antigen-Presenting Cells in Inflammation and Immunity
64 Antigen-Presenting Cell Trafficking and Their Role in Corneal Transplantation
64 Migration to Draining Lymph Nodes
65 The Role of Vascular Endothelial Growth Factor Receptor-3
66 Direct versus Indirect Pathway of Sensitization
66 Implications and Future Directions
67 References

71 Ocular Immunosuppressive Microenvironment
Taylor, A.W. (Boston, Mass.)

71 Abstract
72 Delayed-Type Hypersensitivity
73 Innate Immunity and T-Cell Activation in Delayed-Type Hypersensitivity
73 The Immunosuppressive Ocular Microenvironment
74 Regulation of T-Cell Activity by Aqueous Humor
78 The Immune Response within the Eye
80 Conclusions
81 References

86 Immunosuppressive Properties of the Pigmented Epithelial Cells and the Subretinal Space
Zamiri, P.; Sugita, S.; Streilein, J.W. (Boston, Mass.)

86 Abstract
87 Immunoregulatory Properties of Pigmented Epithelial Cells in the Eye
87 Transforming Growth Factor-β
Immune-Mediated Ocular Diseases

155 Impact of Inflammation on Ocular Immune Privilege
 Mo, J.-S.; Wang, W.; Kaplan, H.J. (Louisville, Ky.)

155 Abstract
155 Indicators of Ocular Immune Privilege
156 Animal Models of Intraocular Inflammation
157 Influence of Inflammation on the Ocular Immunosuppressive Microenvironment
158 Influence of Inflammation on the Induction of ACAID
159 Influence of Inflammation on Ocular Immune Privilege
161 Neural Control of Ocular Immune Privilege and Inflammation
163 Acknowledgments
163 References

166 Allergy and Contact Lenses
 Siddique, M.; Manzouri, B.; Flynn, T.H.; Ono, S.J. (London)

166 Abstract
166 Mechanism of Ocular Allergy
167 The Role of Mast Cells
168 Cytokine Responses
169 Stem Cell Factor and TNF-α
169 Seasonal and Perennial Allergic Conjunctivitis
170 Vernal and Atopic Keratoconjunctivitis
171 Local Contact Lens-Induced Allergic Conjunctivitis
171 Giant Papillary Conjunctivitis
172 Pathogenesis of Giant Papillary Conjunctivitis
172 Other Forms of Contact Lens-Related Allergy
173 References

176 Dry Eye Syndromes
 Barabino, S. (Boston, Mass./Genoa); Dana, M.R. (Boston, Mass.)

176 Abstract
177 Lacrimal Gland Inflammation
178 Immunohomeostasis of the Lacrimal Gland
179 The Role of Regulatory T Cells
179 The Role of TGF-β
180 Loss of Immunohomeostasis of the Lacrimal Gland
181 Ocular Surface Inflammation
181 Loss of Immunohomeostasis of the Ocular Surface
183 Conclusion
183 References
185 **Bacterial Infections of the Cornea (Pseudomonas aeruginosa)**
Hazlett, L.D. (Detroit, Mich.)

185 Abstract
185 Microbial Keratitis
186 MIP-2, IL-1, and PMN
186 CD4+ T Cells and Genetic Susceptibility to *P. aeruginosa*
187 MIP-1α Regulates CD4+ T Cell Chemotaxis
187 IL-12 and IFN-γ in C57BL/6 Mice
188 IL-18, IFN-γ and NK Cells in BALB/c Mice
188 Antigen Presentation: Langerhans Cells and Costimulation
190 Macrophages in Innate Response to *P. aeruginosa* Ocular Infection
191 Toll-Like Receptors in Bacterial Keratitis
191 Acknowledgment
192 References

195 **Cicatrizizing and Autoimmune Diseases**
Rashid, S.; Dana, M.R. (Boston, Mass.)

195 Abstract
196 Mooren’s Ulcer
198 Peripheral Ulcerative Keratitis Associated with Systemic Immune-Mediated Diseases
199 Cicatrizizing Conjunctivitis
199 Ocular Cicatricial Pemphigoid
200 Conclusion
201 References

203 **How Herpes Simplex Virus Type 1 Rescinds Corneal Privilege**
Lepisto, A.J.; Frank, G.M.; Hendricks, R.L. (Pittsburgh, Pa.)

203 Abstract
203 Role of T Cells
205 Antigen Presentation
206 Cytokines
207 Angiogenesis
208 Disease Models
209 Conclusion
210 Acknowledgment
210 References

213 **Intraocular Diseases – Anterior Uveitis**
Bora, N.S. (Little Rock, Ark.); Kaplan, H.J. (Louisville, Ky.)

213 Abstract
213 Uveitis
214 Epidemiology and Classification of Uveitis
215 Anterior Uveitis
215 Animal Models of Uveitis
216 Animal Models of Anterior Uveitis
216 Endotoxin Induced Uveitis
216 Collagen-Induced Anterior Uveitis – Experimental Autoimmune Anterior Uveitis
217 Experimental Melanin Induced Uveitis (EMIU)
217 Tolerance Induction for the Treatment of Anterior Uveitis

221 **Glaucoma**
Tezel, G. (Louisville, Ky.); Wax, M.B. (Fort Worth, Tex./Dallas, Tex.)

221 Abstract
221 Aberrant T Cell Immunity
223 Humoral Immune Response
224 Tissue Stress in Glaucoma
225 Conclusion
225 References

228 **Intermediate and Posterior Uveitis**
Forrester, J.V. (Aberdeen)

228 Abstract
229 The Clinical Problem
229 Infectious versus Non-Infectious Disease
231 Non-Infectious Uveitis: Is Posterior Uveitis One or Several Diseases?
232 Experimental Models
232 Historical Overview
233 Development of Spontaneous Models of Uveoretinitis
235 Site of Initiation of Disease
235 Mechanism of Tissue Destruction
236 Experimental Approaches to Modulating Disease in Experimental
Autoimmune Uveoretinitis
238 Translational Studies
238 Current Therapies
238 Newer Approaches to the Management of Sight-Threatening Uveoretinitis
239 The Future: What Is Required for the Development of New and Safer Treatments
for Sight-Threatening Posterior and Intermediate Uveitis?
240 References

244 **Acute Retinal Necrosis**
Kezuka, T. (Tokyo); Atherton, S.S. (Augusta, Ga.)

244 Abstract
245 Clinical Features of Acute Retinal Necrosis
247 Diagnosis and Virus Identification
248 Pathogenesis of Acute Retinal Necrosis
250 Puzzles and Questions
251 References
254 **Onchocerca volvulus, Wolbachia and River Blindness**
Pearlman, E.; Gillette-Ferguson, I. (Ohio)

254 Abstract
255 Infection and Disease – Host and Parasite Factors Determine the Balance between Pro- and Anti-Inflammatory Responses in Filariasis
256 The Pro-Inflammatory Response – Endosymbiotic *Wolbachia* Bacteria
256 Pathogenesis of Ocular Onchocerciasis
257 Role of Innate Immunity in *O. volvulus* Keratitis
259 *Wolbachia* and Toll-Like Receptors
262 Conclusion
263 Acknowledgments
263 References
265 Note Added in Proof

266 **Role of Bacterial and Host Factors in Infectious Endophthalmitis**
Gregory, M.; Gilmore, M.S. (Boston, Mass.); Callegan, M.C. (Oklahoma City, Okla.)

266 Abstract
266 Epidemiology and Etiology of Endophthalmitis
267 Bacterial Virulence Influences Outcome
267 *Bacillus cereus* Endophthalmitis
268 *S. aureus* Endophthalmitis
268 *Enterococcus faecalis* Endophthalmitis
269 *Propionibacterium acnes* Endophthalmitis
269 Gram-Negative Causes of Endophthalmitis
270 Host Response in Endophthalmitis
270 Chronic Inflammation
270 Acute Inflammation
270 Possible Role of Adaptive Immunity
271 Innate Immunity
273 Anti-Inflammatory Reagents
274 Conclusion
274 References

276 **Influence of Immune Surveillance and Immune Privilege on Formation of Intraocular Tumors**
Chen, P.W. (Dallas, Tex.); Ksander, B.R. (Boston, Mass.)

276 Abstract
277 Beginnings of the Immune Surveillance Theory
278 The Revival of Immune Surveillance
279 Involvement of Innate and Adaptive Immunity in Immune Surveillance
281 The Immunoediting Hypothesis
283 Selective Pressure and Tumor Escape
283 Does Immune Surveillance Occur within the Immune-Privileged Eye?
284 Regulation of Immune Surveillance Effectors within the Eye
NK Cells
DCs/Macrophages
NKT Cells
γδ T Cells
CD4+ and CD8+ T Cells

References

Treatment of Immune-Mediated Ocular Diseases

290 Immunogenicity and Immune Privilege of Corneal Allografts
Hori, J. (Tokyo); Niederkorn, J.Y. (Dallas, Tex.)

Abstract
The Immunogenicity of Corneal Allografts: Heterotopic Corneal Transplantation in Animal Models
Skin and Subcutaneous Space
Subcapsular Space of Kidney
Immunogenic Potential and Immune Privilege of Each Layer of the Corneal Allograft
Strategies to Eliminate the Immunogenicity of Orthotopic Corneal Allografts
Reconstitution of Immune Privilege and Promoting Corneal Allograft Acceptance in High-Risk Eyes
Immune Privilege of Corneal Allografts: Contributions of the Corneal Graft Bed and the Eye
Afferent Blockade of the Immune Response
Deviation of the Systemic Immune Response to Corneal Allografts
Efferent Blockade of Immune Response
Summary and Conclusions
References

300 Retinal Transplantation
Ng, T.F. (Boston, Mass.); Klassen, H.J. (Boston, Mass./Irvine, Calif.); Hori, J. (Tokyo); Young, M.J. (Boston, Mass.)

Abstract
Transplantation of Retinal Tissue and Retinal Pigment Epithelium to the Eye
Immune-Privileged Status of Potential Donor Tissues
Retinal Pigment Epithelium
Neuronal Retina
The Immunological Properties of CNS Stem Cells
Survival of Neural Stem Cells Placed beneath the Kidney Capsule
Donor-Specific Delayed Hypersensitivity
Presentation of Alloantigens to Primed T Cells
Survival of Neural Stem Cells before and after Sensitization in Mice
MHC and Fas Expression by Mammalian CNS Stem Cells
Changes in Immune Marker Expression in Response to IFN-γ
Conclusion
References
317 Therapies Based on Principles of Ocular Immune Privilege
Zhang-Hoover, J.; Stein-Streilein, J. (Boston, Mass.)

317 Abstract
319 F4/80+ Antigen-Presenting Cells: Messengers in the Camero-Splenic Axis during Anterior Chamber-Associated Immune Deviation
319 Mechanisms of Tolerance Induction by TGF-β2-Treated, Antigen-Pulsed Antigen-Presenting Cells
320 Therapeutic Application of Tolerance-Inducing Antigen-Presenting Cells in Disease Models
321 Experimental Autoimmune Encephalomyelitis
321 The Autoimmune Pulmonary Fibrosis Model
322 The Th2-Mediated Asthma Model
323 Conclusions, Future Perspectives, and Possibilities in Humans
324 References

328 Author Index

329 Subject Index
Abbreviations used in this book

AC anterior chamber
ACAID anterior chamber-associated immune deviation
ADT-HIPIF adoptively transferred-hapten immune pulmonary interstitial fibrosis
	agr accessory gene regulator
AH aqueous humor
AIRE autoimmune regulator
AKC atopic keratoconjunctivitis
AMD age-related macular degeneration
ARN acute retinal necrosis
AU anterior uveitis
BCR B cell receptor
BM bone marrow
BMZ basement membrane zone
BRB blood-retinal barrier
C3 complement 3
CB ciliary body
CCC chronic cicatizing conjunctivitis
CFA complete Freund’s adjuvant
CGRP calcitonin gene-related peptide
CNV choroidal neovascularization
CRP complement-regulatory proteins
CTL cytotoxic T lymphocytes
CTLA-4 cytotoxic T lymphocyte antigen-4
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>DES</td>
<td>dry eye syndrome</td>
</tr>
<tr>
<td>DTH</td>
<td>delayed-type hypersensitivity</td>
</tr>
<tr>
<td>EAAU</td>
<td>experimental autoimmune anterior uveitis</td>
</tr>
<tr>
<td>EAU</td>
<td>experimental autoimmune uveoretinitis</td>
</tr>
<tr>
<td>EE</td>
<td>endogenous endophthalmitis</td>
</tr>
<tr>
<td>EIU</td>
<td>endotoxin-induced uveitis</td>
</tr>
<tr>
<td>EMIU</td>
<td>experimental melanin protein-induced uveitis</td>
</tr>
<tr>
<td>FasL</td>
<td>Fas ligand</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>GPC</td>
<td>giant papillary conjunctivitis</td>
</tr>
<tr>
<td>HEL</td>
<td>hen egg lysozyme</td>
</tr>
<tr>
<td>HSK</td>
<td>herpes stromal keratitis</td>
</tr>
<tr>
<td>HSV-1</td>
<td>herpes simplex virus type 1</td>
</tr>
<tr>
<td>I/CB</td>
<td>iris and ciliary body</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>intercellular adhesion molecule-1</td>
</tr>
<tr>
<td>ICE</td>
<td>interleukin-1β-converting enzyme</td>
</tr>
<tr>
<td>IEL</td>
<td>intraepithelial lymphocytes</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>iNKT</td>
<td>invariant natural killer T (cell)</td>
</tr>
<tr>
<td>IRBP</td>
<td>interphotoreceptor retinoid binding protein</td>
</tr>
<tr>
<td>iT_reg</td>
<td>induced CD4+ CD25+ regulatory T cell</td>
</tr>
<tr>
<td>KC</td>
<td>the murine homologue of Gro-α</td>
</tr>
<tr>
<td>KCS</td>
<td>keratoconjunctivitis sicca</td>
</tr>
<tr>
<td>KO</td>
<td>knockout</td>
</tr>
<tr>
<td>LC</td>
<td>Langerhans cell</td>
</tr>
<tr>
<td>LFA-1</td>
<td>lymphocyte function-associated antigen-1</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>MAC</td>
<td>membrane attack complex</td>
</tr>
<tr>
<td>MCA</td>
<td>methylcholanthrene</td>
</tr>
<tr>
<td>MCSF</td>
<td>macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MICA/B</td>
<td>MHC class I chain-related proteins A and B</td>
</tr>
<tr>
<td>MIP</td>
<td>macrophage inflammatory protein</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinase</td>
</tr>
<tr>
<td>MPO</td>
<td>myeloperoxidase</td>
</tr>
<tr>
<td>MSH</td>
<td>melanocyte stimulating hormone</td>
</tr>
<tr>
<td>MTU</td>
<td>Mycobacterium tuberculosis adjuvant-induced uveitis</td>
</tr>
<tr>
<td>MyD889</td>
<td>myeloid differentiation factor 88</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>MZ</td>
<td>marginal zone</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>NKT</td>
<td>natural killer T (cells)</td>
</tr>
<tr>
<td>NNR</td>
<td>neonatal neuronal retina</td>
</tr>
<tr>
<td>nT<sub>reg</sub></td>
<td>naturally occurring CD4<sup>+</sup> CD25<sup>+</sup> regulatory T cell</td>
</tr>
<tr>
<td>OCP</td>
<td>ocular cicatricial pemphigoid</td>
</tr>
<tr>
<td>OPG</td>
<td>osteoprotegerin</td>
</tr>
<tr>
<td>OVA</td>
<td>ovalbumin</td>
</tr>
<tr>
<td>PAC</td>
<td>perennial allergic conjunctivitis</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>PDS</td>
<td>pigment dispersion syndrome</td>
</tr>
<tr>
<td>PE</td>
<td>pigmented epithelial</td>
</tr>
<tr>
<td>PEC</td>
<td>peritoneal exudate cells</td>
</tr>
<tr>
<td>PMN</td>
<td>polymorphonuclear neutrophils</td>
</tr>
<tr>
<td>POE</td>
<td>postoperative endophthalmitis</td>
</tr>
<tr>
<td>POMC</td>
<td>pro-opiomelanocortin</td>
</tr>
<tr>
<td>PTE</td>
<td>posttraumatic endophthalmitis</td>
</tr>
<tr>
<td>PUK</td>
<td>peripheral ulcerative keratitis</td>
</tr>
<tr>
<td>RA</td>
<td>rheumatoid arthritis</td>
</tr>
<tr>
<td>RGCs</td>
<td>retinal ganglion cells</td>
</tr>
<tr>
<td>RPE</td>
<td>retinal pigment epithelial</td>
</tr>
<tr>
<td>SAC</td>
<td>seasonal allergic conjunctivitis</td>
</tr>
<tr>
<td>sar</td>
<td>staphylococcal accessory regulator</td>
</tr>
<tr>
<td>SC</td>
<td>secretory component</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>SOM</td>
<td>somatostatin</td>
</tr>
<tr>
<td>SRS</td>
<td>subretinal space</td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper (cells)</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>TNFRII</td>
<td>TNF receptor II</td>
</tr>
<tr>
<td>T<sub>reg</sub></td>
<td>regulatory T cells</td>
</tr>
<tr>
<td>TSP</td>
<td>thrombospondin</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VIP</td>
<td>vasoactive intestinal polypeptide</td>
</tr>
<tr>
<td>VKC</td>
<td>vernal keratoconjunctivitis</td>
</tr>
<tr>
<td>VKH</td>
<td>Vogt-Koyanagi-Harada disease</td>
</tr>
<tr>
<td>VZV</td>
<td>varicella-zoster virus</td>
</tr>
</tbody>
</table>