Practical Algorithms in Pediatric Nephrology

Editors
Israel Zelikovic, Haifa
Israel Eisenstein, Haifa

56 graphs, 1 figure and 10 tables, 2008

Basel · Freiburg · Paris · London · New York · Bangalore · Bangkok · Shanghai · Singapore · Tokyo · Sydney
Contents

1 Contributors

2 Preface
Z. Hochberg

3 Introduction
I. Zelikovic; I. Eisenstein

Glomerular and vascular disease

4 Hematuria
A.L. Friedman; S. Turi

6 Acute nephritic syndrome
F. Santos; S.P. Makker

8 Proteinuria
F. Santos; S.P. Makker

10 Nephrotic syndrome in the first year of life
F. Santos; S.P. Makker

12 Nephrotic syndrome in the child and adolescent
S.P. Makker; F. Santos

14 Rapidly progressive glomerulonephritis
S.P. Makker; F. Santos

16 Chronic nephritic syndrome
S.P. Makker; F. Santos

18 Vasculitis
W. Proesmans; U.S. Alon

20 Hemolytic uremic syndrome
W. Proesmans; U.S. Alon

Urinary tract disease/tubulointerstitial nephropathy

22 Urinary tract infection
R. Adelman; S. Hulton

24 Dilated/obstructed urinary tract
S. Hulton; R. Adelman

26 Fetal hydrenephrosis
J.-P. Guignard; R.N. Fine

28 Vescicourethral reflux
R. Adelman; S. Hulton

30 Dysfunctional voiding
S. Hulton; R. Adelman

32 Loin pain with hematuria
J. Smith; F.B. Stapleton

34 Renal trauma
R. Adelman; S. Hulton

36 Tubulointerstitial nephritis
A.L. Friedman; S. Turi

Structural/congenital abnormalities

38 Single kidney (renal agenesis)
G. Rizzoni; M.A. Linshaw

40 Renal hypoplasia-dysplasia
G. Rizzoni; M.A. Linshaw

42 Nephromegaly
M.A. Linshaw; G. Rizzoni

44 Hyperechoic kidney
M.A. Linshaw; G. Rizzoni

46 Cystic kidneys
G. Rizzoni; M.A. Linshaw

48 Renal mass
M.A. Linshaw; G. Rizzoni

Hypertension

50 Neonatal hypertension
S. Turi; A.L. Friedman

52 Pediatric hypertension
S. Turi; A.L. Friedman

Tubular disease

54 Aminoaciduria
I. Eisenstein; P. Goodyer; I. Zelikovic

56 Cystinuria
P. Goodyer; I. Eisenstein; I. Zelikovic

58 Glycosuria
I. Eisenstein; P. Goodyer; I. Zelikovic

60 Renal tubular acidosis
I. Eisenstein; P. Goodyer; I. Zelikovic

62 Proximal tubulopathy
(Fanconi syndrome)
P. Goodyer; I. Eisenstein; I. Zelikovic

64 Polyuria
P. Goodyer; I. Eisenstein; I. Zelikovic

66 Hypouricemia
J. Smith; F.B. Stapleton

68 Hyperuricemia
F.B. Stapleton; J. Smith

70 Rickets
G. Ariceta; B. Hoppe; C.B. Langman
Fluid/electrolyte/acid base balance

72 Hyponatremia
S. Watkins; D. Okamura; J. Rodríguez Soriano

74 Hypernatremia
S. Watkins; D. Okamura; J. Rodríguez Soriano

76 Hypochloremia
J. Rodríguez Soriano; D. Okamura; S. Watkins

78 Hyperchloremia
D. Okamura; J. Rodríguez Soriano; S. Watkins

80 Hypokalemia
D. Okamura; J. Rodríguez Soriano; S. Watkins

82 Hyperkalemia
J. Rodríguez Soriano; D. Okamura; S. Watkins

84 Metabolic acidosis
U.S. Alon; W. Proesmans

86 Metabolic alkalosis
U.S. Alon; W. Proesmans

88 Hypovolemia
U.S. Alon; W. Proesmans

90 Edema
W. Proesmans; U.S. Alon

Divalent ion metabolism

92 Hypocalcemia
G. Ariceta; B. Hoppe; C.B. Langman

94 Hypercalcemia
B. Hoppe; G. Ariceta; C.B. Langman

96 Hypophosphatemia
C.B. Langman; G. Ariceta; B. Hoppe

98 Hyperphosphatemia
C.B. Langman; G. Ariceta; B. Hoppe

100 Hypomagnesemia
I. Eisenstein; P. Goodyer; I. Zelikovic

102 Hypercalciuria
F.B. Stapleton; J. Smith

104 Nephrolithiasis/urolithiasis
F.B. Stapleton; J. Smith

Renal failure

106 Oliguria/anuria
J.-P. Guignard; R.N. Fine

108 Neonatal acute renal failure
J.-P. Guignard; R.N. Fine

110 Acute renal failure (child/adolescent)
R.N. Fine; J.-P. Guignard

112 Chronic renal failure
R.N. Fine; J.-P. Guignard

114 Renal osteodystrophy
R.N. Fine; J.-P. Guignard

116 Index of Signs and Symptoms

120 Abbreviations
Contributors

Raymond Adelman, MD
Department of Pediatrics
Phoenix Children’s Hospital
Phoenix, AZ, USA

Uri S. Alon, MD
Section of Pediatric Nephrology
The Children’s Mercy Hospital and Clinics
University of Missouri
Kansas City, MO, USA

Gema Ariceta, MD
Division of Pediatric Nephrology
Hospital de Cruces
Baracaldo, Vizcaya, Spain

Israel Eisenstein, MD
Pediatric Nephrology
Rambam Medical Center
Faculty of Medicine – Technion
Haifa, Israel

Richard N. Fine, MD
School of Medicine
State University of New York at Stony Brook
Stony Brook, NY, USA

Aaron L. Friedman, MD
Department of Pediatrics
University of Minnesota
Minneapolis, MN, USA

Paul Goodyer, MD
Division of Pediatric Nephrology
The Montreal Children’s Hospital
McGill University
Montreal, Quebec, Canada

Jean-Pierre Guignard, MD
Division of Pediatric Nephrology
Department of Pediatrics
Lausanne University Medical School
Lausanne, Switzerland

Bernd Hoppe, MD
University Children’s Hospital
Division of Pediatric Nephrology
Cologne, Germany

Sally Hulton, MD
Department of Pediatric Nephrology
The Birmingham Children’s Hospital
NHS Trust
Birmingham, United Kingdom

Craig B. Langman, MD
Feinberg School of Medicine
Northwestern University
Kidney Diseases, Children’s Memorial Hospital
Chicago, IL, USA

Michael A. Linshaw, MD
Division of Pediatric Nephrology
Massachusetts General Hospital
Boston, MA, USA

Sudesh Paul Makker, MD
Pediatric Nephrology
UC Davis Medical Center
Sacramento, CA, USA

Daryl Okamura, MD
Division of Pediatric Nephrology
Children’s Hospital and Regional Medical Center
University of Washington
Seattle, WA, USA

Willem Proesmans, MD
Renal Unit, Department of Pediatrics
University Hospital Gasthuisberg
Leuven, Belgium

Gianfranco Rizzoni †, MD
Division of Nephrology
Children’s Hospital and Research Institute Bambino Gesu
Rome, Italy

Juan Rodríguez Soriano, MD
Division of Pediatric Nephrology
Department of Pediatrics
Hospital de Cruces and Basque University
Baracaldo, Vizcaya, Spain

Fernando Santos, MD
Division of Pediatric Nephrology
Hospital Central de Asturias
University of Oviedo
Oviedo, Asturias, Spain

Jodi Smith, MD
Division of Pediatric Nephrology
Children’s Hospital and Regional Medical Center
University of Washington
Seattle, WA, USA

F. Bruder Stapleton, MD
Department of Pediatrics
Children’s Hospital and Child Health Center
University of Szeged
Szeged, Hungary

Sandra Watkins, MD
Division of Pediatric Nephrology
Children’s Hospital and Regional Medical Center
University of Washington
Seattle, WA, USA

Israel Zelikovic, MD
Pediatric Nephrology
Rambam Medical Center
Faculty of Medicine – Technion
Haifa, Israel
The term ‘algorithm’ is derived from the name of the ninth century Arabic mathematician Al-Jawwars, who also gave his name to ‘algebra’. His ‘algorismus’, indicated a well-defined procedure for step-by-step logical approach to mathematical problem-solving. In reading the final product, written by some of the finest pediatric nephrologists in the world and edited by my friends Drs. Israel Zelikovic and Israel Eisenstein, it is obvious that the spirit of the algorismus has been utilized in its best. The algorithm input are physical symptoms and signs, or laboratory results, which lead to a number of effective steps, and produces the diagnoses for an output.

Practical Algorithms in Pediatric Nephrology is meant as a pragmatic text to be used at the patient’s bedside. The experienced practitioner applies step-by-step logical problem-solving for each patient individually. Decision trees prepared in advance have the disadvantage of unacquaintedness with the individual patient. Yet, for the physician who is less experienced with a given problem, a prepared algorithm would provide a logical, concise, cost-effective approach prepared by a specialist who is experienced with the given problem.

Thirty years after completing my pediatric residency, I discover that Pediatric Nephrology has become a sophisticated specialty with solid scientific background, of which I know so little. I would still refer my patients to a specialist with many of the diagnoses, symptoms and signs discussed here. But, with the help of this outstanding algorithms and text, I would refer them after an educated initial workup, and would be better equipped to follow the specialist’s management.

This is the third in the Series of Practical Algorithms in Pediatrics, following Practical Algorithms in Pediatric Endocrinology and Practical Algorithms in Pediatric Hematology-Oncology. Hopefully, this volume will provide residents, fellows, general pediatricians and family practitioners some important clinical tools in understanding their patients.

Ze’ev Hochberg, MD, PhD
Series Editor
Introduction

*Practical Algorithms in Pediatric Nephrology* is a pragmatic text which classifies common clinical symptoms, signs, laboratory abnormalities and issues of management as they present themselves in daily practice. Aimed at an audience of general and family practitioners, pediatricians and trainees who are not exposed to pediatric nephrology problems on a day-to-day basis, it provides a rational, stepwise and as noninvasive as possible approach from which they can profit and acquire medical reasoning.

In the past decade, remarkable progress has been made in our understanding of the molecular pathogenesis of hereditary kidney diseases and congenital urinary tract abnormalities. Studies in molecular genetics and molecular biology have led to the identification of numerous kidney disease-causing mutations, provided important insights into the defective molecular mechanisms underlying various kidney diseases and structural abnormalities of the kidney, and have greatly increased our understanding of the physiology and pathophysiology of renal function in health and disease. Hence, special emphasis has been given in this book to the novel knowledge that has accumulated on the molecular pathophysiology and molecular genetics of various kidney diseases and urinary tract abnormalities, in order to deepen and strengthen the practical approach to common problems occurring in pediatric nephrology. Indeed, many of the algorithms in this book, written by leading investigators in the area of pediatric nephrology, incorporate and exemplify this ‘bench to patient’ approach which has become a characteristic of modern medicine.

It is the Editors’ hope that the algorithmic, logical and stepwise approach to the diagnosis and management of various hereditary and acquired kidney diseases, fluid and electrolyte abnormalities, aberrations in mineral balance, and other impairments in kidney function, will equip the practitioner, inexperienced in the field of pediatric nephrology, with the tools and ability to successfully confront and manage, at least at their initial stages, clinical problems which have always been notorious for their complexity and which have been left, from the outset, to specialists in the area.

During the production process of this book, it has been our privilege to interact and work with some of the leading clinicians and teachers in the field of pediatric nephrology in the world. It has been a very enriching and gratifying experience for us, the editors, for which we thank all the authors. A final note – we have been very saddened by the recent passing of Prof. Gianfranco Rizzoni, a prominent pediatric nephrologist from Rome, Italy, who contributed several excellent algorithms to this book. We send our deep condolences to his family and friends.

*Israel Zelikovic, MD*

*Israel Eisenstein, MD*