Dietary Fat Quality for Optimal Health and Well-Being: Overview of Recommendations

Ricardo Uauy

Department of Public Health Nutrition, London School of Hygiene and Tropical Medicine, London, UK; Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile

Introduction

Fats were traditionally considered part of dietary energy needs until George and Mildred Burr in 1929 introduced the concept that fat might be necessary for the proper growth and development of animals and possibly humans. They proposed that linoleic acid (LA; 18:2 n–6), arachidonic acid (20:4 n–6) and α-linolenic acid, need to be provided by the diet to prevent deficiencies. Although essential fats were initially considered of marginal nutritional importance for humans, clinical deficiency symptoms were recorded for the first time in the 1960s. Beyond the fact that essential fats can prevent deficiencies, research over the past decades has shown that they also play a major role in preventing chronic conditions such as cardiovascular diseases. This has resulted in an increased interest in the quality of the dietary lipid supply as a major determinant of long-term health and well-being, which is also reflected in recent diet guidelines. This paper will give an overview of key aspects of present recommendations on dietary fats.

Key Words
Cardiovascular diseases • Dietary recommendations • Fat quality • Health • Lipids

Abstract
A century ago, dietary fat was mainly seen as a source of energy. In 1929, George and Mildred Burr introduced the concept of essential fats: certain fats, i.e. linoleic acid and α-linolenic acid, need to be provided by the diet to prevent deficiencies. Although essential fats were initially considered of marginal nutritional importance for humans, clinical deficiency symptoms were recorded for the first time in the 1960s. Beyond the fact that essential fats can prevent deficiencies, research over the past decades has shown that they also play a major role in preventing chronic conditions such as cardiovascular diseases. This has resulted in an increased interest in the quality of the dietary lipid supply as a major determinant of long-term health and well-being, which is also reflected in recent diet guidelines. This paper will give an overview of key aspects of present recommendations on dietary fats.
established that the plasma concentration of low-density-lipoprotein (LDL), very-low-density-lipoprotein and high-density-lipoprotein (HDL) cholesterol and triglyceride levels are related to the type and amount of FA intake [7, 8]. More recently, evidence on the effect of FAs on insulin sensitivity and glucose metabolism has emerged [9]. The recognition that n–6 and n–3 EFA are precursors to the formation of prostanoids, thromboxanes, leukotrienes and neuroprotectins, which in turn regulate key physiologic functions (blood pressure, vessel stiffness/relaxation, thrombocyte aggregation, fibrinolytic activity, inflammatory responses and leukocyte migration) has added a further dimension to the potential consequences of FAs for human health. Inflammation, vasoconstriction, vasodilatation, blood pressure, bronchial constriction, uterine contractility and reperfusion oxidative damage have been demonstrated to be affected and potentially regulated by n–3 and n–6 EFA or their endogenous metabolic products [10–12].

Interest in the quality of dietary lipid supply as a major determinant of long-term health and well-being is presently growing. We clearly have to go beyond the traditional saturated and polyunsaturated classification that yielded the polyunsaturated/saturated ratio or vegetable versus animal fat division suggesting that animal fat was bad and vegetable fats were good. The role of specific fats which define fat quality and impact health must presently be considered by examining the effects of individual FAs. The key descriptors for fat quality presently include: saturated FAs (SFAs: lauric, myristic, palmitic and stearic acids); monounsaturated FAs (oleic); polyunsaturated FAs [(PUFAs) of the n–6 (LA and arachidonic acid) and n–3 (ALA, eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA) series] and trans FAs (TFAs, elaidic and conjugated trans LA). Thus recent national/international dietary fat and FA recommendations consider the need to satisfy EFA needs, promote neurodevelopment and cardiovascular health and prevent degenerative diseases at all stages of the life course. The World Health Organization (WHO) and the Food and Agriculture Organization of the United Nations (FAO) have provided international recommendations for fats in human health in 1978 and 1994 [11, 25]; additionally, the WHO/FAO expert group that met in 2002 to address nutrition and the prevention of chronic diseases considered fat quality as an important aspect of the preventive strategies (Technical Report Series 916) [15, 16]. The WHO recently produced an update on TFAs in human nutrition [17], and a new report on fat and FAs in human nutrition based on expert consultation conducted late in 2008 is being edited and will be published in the near future. The Barcelona International Expert Meeting used existing national and international recommendations for its deliberations.

Overview of the Present Knowledge and Recommendations

Essential Fatty Acids

Present knowledge establishes a clear need for essential fats; these are the essential PUFAs, LAs and ALAs. These should be considered essential and indispensable since they cannot be synthesized by humans and must be provided by the diet. Since DHA (22:6 n–3) and arachidonic acid (20:4 n–6) can be synthesized from ALA and LA, respectively, they should be considered dispensable, although a dietary supply may be necessary for long-term health [11, 18]. Given the limited and highly variable formation of DHA from ALA (1–5%) and because of its critical role in normal retinal and brain development in the human, DHA (as provided by human milk) should be considered conditionally essential during early development [19–22]. Similarly, DHA might be considered necessary for life-long health considering intakes required for the prevention of cardiovascular (CVDs) and other chronic diseases [10, 11]. Moreover, considering new knowledge on the role of genetic polymorphisms [rs174575] FADS2 gene responsible for desaturase activity – that might explain the variability in the capacity to form DHA from dietary ALA by humans – it is recommended that preformed long-chain n–3 PUFAs (EPA + DHA) be provided for optimal health at all stages of the life course [23, 24]. Infants and children from conception to birth and throughout the life course need sufficient essential fats of the n–6 and n–3 series in their diet to meet their needs [11, 25]. Breast milk as consumed normally provides adequate amounts of these essential fats and adequate amounts of DHA for normal development. After breast feeding is completed, all children and adults should secure an adequate intake of EFAs not only to meet needs for normal growth and development but also sufficient to promote optimal health and well-being. There is limited and inconclusive evidence of the effect of fish oil (a good source of EPA and DHA) on learning ability and behavior among school-age children; studies are mostly limited to children with neurodevelopmental disorders. Research is needed to determine potential age-specific effects of n–3 PUFAs on depression, aggressiveness, mood swings, attentiveness and learning of school children. The potential impact on learning/behavior in school is of great social,
public health and economic interest [Koletzko et al., pers. commun.].

Fat Intake and Weight Maintenance

Ecological studies, including the recent publication by Marantz et al. [26], show that emphasis on low-fat diets has not resulted in a decreased trend of obesity. The effect of the total fat content of the diet on health is mediated by the quality of fat consumed rather than by the quantity of fat consumed. Consumption of excess energy beyond energy needed for maintenance, growth and physical activity is responsible for excess body fat accumulation independent of whether the energy is derived from fat or carbohydrates. In addition, the fat and water contents of foods are the main determinants of the energy density of the diet. A lower consumption of energy-dense (i.e., high-fat, high-sugars and high-starch) foods and energy-dense (i.e., high free sugars) drinks contributes to a reduction in total energy intake. Conversely, a high intake of energy-dilute foods (i.e., vegetables and fruits) and foods high in non-starch polysaccharide, e.g., wholegrain cereals, contributes to a reduction in total energy intake. It should be noted, that very active groups who have diets high in vegetables, legumes, fruits and wholegrain cereals may sustain a total fat intake of up to 35–40% without the risk of unhealthy weight gain. Despite the role of fat in increasing energy density of diets, the long-term effect of energy density in defining unhealthy weight gain is not well established. Women’s Healthy Eating & Living Trial and Women’s Health Initiative, two very large and long-term randomized, double-blind, placebo-controlled trials (RCTs) of low fat, both showed minimal effects on weight [27, 28]. Multiple well-controlled RCTs of equal intensity interventions show greater weight loss on high-fat diets [29, 30]. However, recent data [31] suggest that weight loss is attained mainly by achieving a sustained reduction in energy intake independent of the fat, protein or carbohydrate composition of the diet. The recommendations for total fat are usually formulated to include countries where the usual fat intake is typically above 30% as well as those where the usual intake may be very low, for example <15%. Total fat energy of at least 20% is consistent with good health [15, 32]. Highly active groups with diets rich in vegetables, legumes, fruits and wholegrain cereals may, however, sustain a total fat intake of up to 35% without the risk of unhealthy weight gain. For women of reproductive age at least 20% has been recommended by the Joint FAO/WHO Expert Consultation on Fats and Oils in Human Nutrition [13] and confirmed in the WHO Technical Report Series 916 on Diet, Nutrition and the Prevention of Chronic Diseases [15]. The concern for low-fat diets in women from developing countries relates to the high prevalence of young women with low body mass index, especially in the Indian subcontinent, since this condition is associated with low birth weight and a high prevalence of stunted children [32].

Fats, Fatty Acids and Cholesterol, and Risk of Cardiovascular Diseases

The study of the relationship between dietary fats and CVDs, especially coronary heart disease (CHD), with evidence accrued from animal experiments, observational studies, clinical trials and metabolic studies conducted in diverse human populations, reveals strong and consistent associations between diet and CHD [5, 6, 33, 34]. The potential mechanisms have also been well studied focusing mainly on the effect of diet on plasma lipoprotein cholesterol fractions. SFAs raise total and LDL cholesterol, but individual FAs within this group have different effects. Myristic and palmitic acids have the greatest LDL raising effect and are abundant in diets rich in dairy products and meat [7, 8]. Stearic acid has not been reported to elevate blood cholesterol and has been shown to be rapidly converted to oleic acid in vivo, thus it is considered neutral in terms of the plasma cholesterol effect [35, 36]; less is known on other potential adverse effects of stearic acid on the CVD risk [37, 38]. TFAs are similar to SFAs in their effect on LDL, but additionally they lower the protective HDL cholesterol and increase lipoprotein(a), which further increases the CHD risk. TFAs are the geometrical isomers of cis-un saturated FAs produced in the rumen of ruminant animals or by partial hydrogenation; this process creates TFAs and also removes the critical unsaturated bonds present in EFAs and essential for their action. Metabolic studies have demonstrated that TFAs of natural or as products of partial hydrogenation render the plasma lipid profile even more atherogenic than SFAs, not only by elevating LDL cholesterol to similar levels but also by decreasing HDL cholesterol [7, 39–41]. Several large cohort studies have found that intake of TFAs increases the risk of CHD [42–44]. The most effective replacement for SFAs and TFAs in terms of reducing CHD as an outcome are PUFAs; oils with both LA and ALA predominantly present have been shown to be effective in decreasing LDL cholesterol, CHD events and deaths. This is now supported by the results of several large randomized clinical trials, in which replacement of SFAs and TFAs by vegetable oils rich in essential PUFAs lowered the CHD risk. A recent pooled analysis of 11 large prospective cohort RCTs confirms this statement [45]. TFAs
are presently being reduced or eliminated from retail fats and margarines and spreads in many parts of the world, however deep-fried fast foods and baked goods remain a major source of TFAs [17, 44]. The very-long-chain PUFA of the n–3 series, EPA and DHA, powerfully lower serum triglycerides, but do not modify or may even raise serum LDL cholesterol [45–49]. Most of the epidemiological evidence related to the protective effects of n–3 PUFAs is derived from studies of fish consumption in populations or interventions involving fish oils administered in clinical trials [50–54].

Cholesterol in the blood and tissues is derived from two sources: diet and endogenous synthesis, the former commonly contributes 20–30% to the total body cholesterol pool, thus the regulation of endogenous synthesis plays a key role in the control of plasma levels [55]. Although dietary cholesterol mildly raises plasma cholesterol levels when intake is very high (>400 mg/day), an increase in intake of 100 mg/day would be expected to increase serum cholesterol by approximately 4 mg/dl [56]; epidemiological evidence for an association of dietary cholesterol intake with CVD is contradictory [56–58].

Conclusions

CHD rates can be significantly reduced by dietary changes, which is achieved by replacing saturated fat and trans fats with cis-unsaturated FAs. Advice about dietary fat should focus on the replacement of SFAs and TFAs with PUFA-rich vegetable oils, including sources of n–3 FAs. Replacement of SFAs by carbohydrates provides no benefit in terms of the CHD risk [45]. The food industry should take advantage of the costs and effort of reformulation to make healthier products, avoiding replacing trans and saturated animal fats with vegetable oils rich in palmitic acid (palm oil) and lauric acid (coconut oil). Emphasis should be placed on the need to reduce overall energy intake and increase physical activity rather than recommendations to lower percent energy from fat and reduce fat or ’fatty foods’ as a way to lose weight.

The following recommendations on the quality of fat in the diet are made for optimal health across the life course worldwide, from an age of about 2 years onwards:

- fat may provide up to 30–35% of the daily energy intake;
- saturated fat should provide no more than 10% of the daily energy intake;
- essential PUFA (n–6 and n–3) should contribute 6–10% of the daily energy intake;
- trans fats should be less than 1% of the daily energy intake, and
- the remaining of the energy from fat can be provided by monounsaturated fats (based on Technical Report Series 916) [15].

Disclosure Statement

Ricardo Uauy is President of the IUNS, the IUNS has a private public partnership (PPP) agreement with UNILEVER that has as an objective the dissemination of up-to-date scientific information on diet and nutrition, including dietary fat quality. The PPP is in the public domain and is available at www.iuns.org. R.U. has no personal financial gain linked to this PPP or to his participation in this International Expert Meeting.

References

21 Yuhas R, Pramuk K, Lien EL: Human milk
22 Eilander A, Hundscheid DC, Osendarp SJ,
19 Neuringer M, Connor WE, Van Petten C,
23 Schaeffer L, Gohlke H, Muller M, Heid IM,
18 Salem N Jr, Wegher B, Mena P, Uauy R: Ara-
17 Uauy R, Aro A, Clarke R, Ghaffourunisa,
16 WHO: Global strategy on diet, physical ac-
15 WHO: Diet, nutrition and the prevention of
13 FAO: Dietary fats and oils in human nutri-
12 Calder PC: n–3 polyunsaturated fatty acids,
6
10 Simopoulos AP: Omega–3 fatty acids in
30 Shai I, Schwartz D, Henkin Y, Shahar
31 Sacks FM, Bray GA, Carey VJ, Smith SR,
29 Gardner CD, Kiazand A, Alhasan S, Kim S,
28 Kuller LH, Simkin-Silverman LR, Wing RR,
24 Xie L, Innis SM: Genetic variants of the
FADS1 FADS2 gene cluster are associated with altered (n–6) and (n–3) essential fatty acids in plasma and erythrocyte phospholip-
23 Koletzko B, Lien E, Agostoni C, Böhles H,
Campoy C, Cetin I, Decsi T, Dudenhausen JW,
Du Pont C, Forshy T, Hoelsl I, Holzgreve W,
Laplionne A, Putet G, Secher NJ, Sy-
monds M, Szajewska H, Willatts P, Uauy R,
World Association of Perinatal Medicine Di-
22 Calder PC: n–3 polyunsaturated fatty acids,
19 Neuringer M, Connor WE, Van Petten C,
18 Salem N Jr, Wegher B, Mena P, Uauy R: Ara-
17 Uauy R, Aro A, Clarke R, Ghaffourunisa,
16 WHO: Global strategy on diet, physical ac-
15 WHO: Diet, nutrition and the prevention of
13 FAO: Dietary fats and oils in human nutri-
12 Calder PC: n–3 polyunsaturated fatty acids,
6
10 Simopoulos AP: Omega–3 fatty acids in
30 Shai I, Schwartz D, Henkin Y, Shahar
31 Sacks FM, Bray GA, Carey VJ, Smith SR,
29 Gardner CD, Kiazand A, Alhasan S, Kim S,
28 Kuller LH, Simkin-Silverman LR, Wing RR,
24 Xie L, Innis SM: Genetic variants of the
FADS1 FADS2 gene cluster are associated with altered (n–6) and (n–3) essential fatty acids in plasma and erythrocyte phospholip-
23 Koletzko B, Lien E, Agostoni C, Böhles H,
Campoy C, Cetin I, Decsi T, Dudenhausen JW,
Du Pont C, Forshy T, Hoelsl I, Holzgreve W,
Laplionne A, Putet G, Secher NJ, Sy-
monds M, Szajewska H, Willatts P, Uauy R,
World Association of Perinatal Medicine Di-
22 Calder PC: n–3 polyunsaturated fatty acids,
19 Neuringer M, Connor WE, Van Petten C,
18 Salem N Jr, Wegher B, Mena P, Uauy R: Ara-
17 Uauy R, Aro A, Clarke R, Ghaffourunisa,
16 WHO: Global strategy on diet, physical ac-
15 WHO: Diet, nutrition and the prevention of
13 FAO: Dietary fats and oils in human nutri-
12 Calder PC: n–3 polyunsaturated fatty acids,
6
10 Simopoulos AP: Omega–3 fatty acids in
30 Shai I, Schwartz D, Henkin Y, Shahar
31 Sacks FM, Bray GA, Carey VJ, Smith SR,
29 Gardner CD, Kiazand A, Alhasan S, Kim S,
28 Kuller LH, Simkin-Silverman LR, Wing RR,

