Prognostic Significance of Bcl-2, Tumor-Associated Macrophages, and Total Neoplastic and Inflammatory Lymph Node Involvement in Advanced Stage Classical Hodgkin’s Lymphoma

Ljubomir R. Jakovica, Biljana S. Mihaljevic, Maja D. Perunicic Jovanovic, Andrija D. Bogdanovic, Bosko M. Andjelic, Vladimir Z. Bumbasirevic

a Clinic for Hematology, Clinical Center of Serbia, b Faculty of Medicine, University of Belgrade, c Department for Histopathology, Clinical Center of Serbia, d Institute of Histology and Embryology, Faculty of Medicine University of Belgrade, Belgrade, Serbia

Keywords
Prognostic parameters · Advanced Hodgkin’s lymphoma

Summary
Background: Although Hodgkin’s lymphoma (HL) is a curable cancer, current treatment strategies based on risk stratification and response modulation are not precise enough. The predictive power of biological and morphological parameters is controversial, with prognostic models not reaching wide acceptance. Patients and Methods: We analyzed the prognostic relevance of 8 parameters in 85 advanced-stage classical HL patients, in order to determine whether tissue-based variables could add prognostic value to standard clinical parameters, thus contributing to better risk stratification at presentation. Results: Univariate analysis confirmed 5 indicators of shorter overall survival (OS): Bcl-2 overexpression; increased CD68+ tumor-associated macrophages (TAM); international prognostic score (IPS) > 2; bulky disease; and total lymph node involvement (TLNI) with regard to neoplastic and inflammatory cells. Apart from TLNI, these parameters influenced lower event-free survival (EFS). Multivariate analysis identified 5 independent factors for OS: Bcl-2 overexpression; increased CD68+ TAM; TLNI; IPS > 2; and bulky disease. Increased CD68+ TAM, IPS > 2, and bulky disease affected the EFS. Utilizing the cumulative score of unfavorable prognostic factors for OS, we designed a prognostic model stratifying patients into 4 risk groups (with 0–1, 2, 3, or 4–5 factors), each with progressively reduced OS (p < 0.001). Conclusion: Our findings support the combination of tissue-based variables with clinical parameters at diagnosis, identifying patients who are at higher risk of poor outcome.

Schlüsselwörter
Prognostische Parameter · Fortgeschrittener Morbus Hodgkin

Zusammenfassung
Introduction

Modern therapeutic strategies result in remission after the initial treatment in more than 90% of Hodgkin's lymphoma (HL) patients [1]. However, approximately one third of patients with high-risk prognostic features at presentation die following relapse or progressive disease (PD) [2]. In addition, modern therapy advances in HL are often burdened with treatment-related late side effects such as cardiac failure, infertility, or secondary malignancies [3]. Thus, a more accurate prediction of treatment outcome could help to identify patients who might respond less effectively to standard first-line therapy and those who are likely to benefit from reduced treatment [4]. Since the beginning of HL treatment, the identification of prognostic factors and risk-adapted treatment strategies has been a major issue [5]. The conventional treatment strategy has 2 complementary approaches: i) risk stratification using prognostic models based on adverse clinical parameters such as the International Prognostic Score (IPS) and the Ann Arbor classification; and ii) response modulation in which therapy is adapted according to positron emission tomography-computed tomography (PET-CT) findings following induction therapy [6–8]. However, it is difficult to use only these treatment strategies since neither is accurate enough to provide a truly personalized treatment for the individual patient [1]. The biological aspects of HL have also been explored in an attempt to identify reliable initial tissue-based variables as determinants of clinical outcome [9]. Histological subtype, phenotypic characteristics of Hodgkin and Reed-Sternberg (HRS) cells, microenvironment cell type composition, and increased levels of plasma cytokines/chemokines involved in lymphoma microenvironment formation were related to prognosis [9–15]. Their predictive value has not yet been powerful enough to be included in therapeutic decision making [16]. The aim of this study was to determine whether molecular and pathomorphological parameters could add prognostic value to standard clinical parameters and contribute to a better risk stratification of HL patients. We investigated the prognostic impact of molecular (Bel-2, survivin, active caspase 3, Ki-67, CD68), pathomorphological (total neoplastic and inflammatory lymph node involvement, TLNI), and clinical parameters (IPS and bulky disease) in advanced stage classical HL (cHL) patients at the time of the initial diagnosis.

Patients and Methods

A retrospective study was performed on a group of 85 patients treated during the period of 1997–2005. All patients fulfilled the following criteria: initial diagnosis of cHL following a lymph node biopsy before any treatment; representative surgically extirpated, formalin-fixed, paraffin-embedded diagnostic lymph node specimen available for histological revision and further immunohistochemical studies; available clinical and laboratory data on presentation and follow-up records; negative status for human immunodeficiency virus infection; complete staging corresponding to advanced stage cHL according to the Cotswold revision of the Ann Arbor classification criteria; patients were uniformly treated according to treatment guidelines at the time of diagnosis; all had a minimum follow-up of 5 years. This study was commenced following approval by the Institutional Ethical Board of the Clinic of Hematology, Clinical Center of Serbia, and Ethical Committee of the Faculty of Medicine, University of Belgrade, Serbia, according to the Helsinki Declaration and Good Clinical Practice policy.

Pathological Aspects and Immunohistochemistry

Two hematopathologists (MPJ and LJ) independently reviewed and evaluated all slides. In all cases the diagnosis of cHL was confirmed by immunophenotyping, and classified according to the WHO classification of tumors of the hematopoietic and lymphoid tissues [17]. Immunohistochemical staining was performed by application of monoclonal antibodies for Bel-2 (124, monoclonal; DakoCytomation, Glostrup, Denmark), survivin (polyclonal; LabVision, Fremont, CA, USA), active caspase 3 (y83–77, monoclonal; Novus Biologicals, Littleton, CO, USA), Ki-67 (MIB 1, monoclonal; DakoCytomation), and CD68 (PG-M1; DakoCytomation). A peroxidase-labeled detection system was used (LSAB 2, DakoCytomation or Ultravision LP Detection system, LabVision), and a standard antigen retrieval protocol. The determination of the number and percentage of HRS cells and tumor-associated macrophages (TAM) expressing immunohistochemical parameters was performed using a Leica® DMR microscope (Leica Microsystems GmbH, Wetzlar, Germany) at 10 randomly selected high power fields (×400) within cHL infiltrates. The labeling index of positive tumor cells was determined by the correlation between positive HRS and the total number of evaluated HRS cells. The percentage of CD68-positive (CD68+) TAM was determined by correlating CD68+ TAM to the total number of non-neoplastic cells in the cHL background. According to previously published data, cutoff values of 50% for Bel-2, survivin, and Ki-67, 5% for active caspase 3, and 25% for CD68+ TAM were used for evaluating immunohistochemical results [11, 13, 18, 19].

Pathomorphologic Evaluation

The pathomorphologic feature of TLNI by neoplastic and inflammatory cells (total involvement versus focal residual secondary follicles) was analyzed according to the German Hodgkin Study Group criteria [20].

Clinical Parameters

Medical records were reviewed for additional clinical and laboratory data: age, gender, Ann Arbor stage, presence or absence of systemic symptoms, bulky disease, hemoglobin, white blood count, lymphocyte count, and serum albumin. IPS and bulky disease were calculated according to the established criteria [6, 21].

Selected variables were chosen on the basis of their prognostic ability, capacity to represent different aspects of the disease, or interactions.

Treatment

All patients were treated with the same therapeutic schedule, consisting of 6–8 cycles of the classical ABVD regimen (doxorubicine, bleomycine, vinblastine, dacarbazine) and additional radiation therapy (RT) to sites of tumor involvement. Patients with treatment failure/relapse received salvage chemotherapy with the DHAP regimen (dexamethasone, cisplatinum, Ara-c). Having completed this combined treatment, patients were assessed for complete remission (CR), partial remission (PR), stable disease (SD), and PD. Treatment failure was defined as a failure to achieve CR or PR after the initial therapy, or response (CR/PR) less than 3 months after therapy completion. Relapse was defined as disease recurrence if previous CR was achieved at least 3 months after completing treatment, or if the disease progressed in the case of achieved PR.
Advanced Hodgkin’s Lymphoma Prognosis

Univariate Analysis
Univariate analysis showed that the following factors were associated with lower OS: Bcl-2 overexpression by HRS cells (> 50%) (OS 5yr with/without risk factor 50 vs. 80%, respectively; log rank p = 0.007); increased number (> 25%) of CD68+ TAM (OS 5yrs with/without risk factor 52 vs. 83%, respectively; log rank p = 0.003); high IPS score (> 2) (OS 5yrs with/without risk factor 51 vs. 90%, respectively; log rank p < 0.001); bulky disease (OS 5yr with/without risk factor 53 vs. 82%, respectively; log rank p = 0.002); and TLNI with neoplastic and inflammatory cells (OS 5yrs with/without risk factor 55 vs. 80%, respectively; log rank p = 0.017) (fig. 1). Factors with significant impact on EFS were: Bcl-2 overexpression (EFS 5yrs with/without risk factor 43 vs. 68%, respectively; log rank p = 0.031); increased number of CD68+ TAM (EFS 5yrs with/without risk factor 48 vs. 68%, respectively; log rank p = 0.035); high IPS score (> 2) (EFS 5yrs with/without risk factor 46 vs. 74%, respectively; log rank p = 0.004); bulky disease (EFS 5yrs with/without risk factor 44 vs. 71%, respectively; log rank p = 0.014) (fig. 1). In addition, TLNI showed a trend towards lower EFS (EFS 5yrs with/without risk factor 48 vs. 66%, respectively; log rank p = 0.087) (fig. 1). The factors survivin, active caspase 3, and Ki-67 showed no significant impact on OS (log rank p = 0.065, p = 0.787, and p = 0.187, respectively) and EFS (log rank p = 0.153, p = 0.677, and p = 0.319, respectively).

Multivariate Analysis
The multivariate analysis for OS, including all univariately significant risk factors, identified Bcl-2+ > 50%, > 25% CD68+ TAM, TLNI, IPS > 2, and bulky disease as independent prognostic factors for OS (p = 0.026, p = 0.042, p = 0.004, p = 0.0004, and p = 0.003, respectively). In a respective model for EFS, increased CD68+ TAM, IPS > 2, and bulky disease remained significant (p = 0.044, p = 0.009, and p = 0.018, respectively) (table 2).

Survival Model
Based on the cumulative score of identified unfavorable prognostic factors for OS (2 molecular, 1 morphological, and 1 clinical risk factor).

Table 1. Baseline characteristics of the analyzed patients (n = 85)

<table>
<thead>
<tr>
<th>Patients, n (%)</th>
<th>Demographic data</th>
<th>Clinical data</th>
<th>Immunohistochemistry – HRS cells</th>
<th>Pathomorphological features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>46 (54)</td>
<td>21 (25)</td>
<td>26 (31)</td>
<td>23 (28)</td>
</tr>
<tr>
<td>Age > 45 years</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>Ann Arbor stage</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>II</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>III</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>IV</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>B symptoms</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>IPS (> 2), high risk</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>Bulky disease</td>
<td>7 (8)</td>
<td>44 (52)</td>
<td>34 (40)</td>
<td>30 (36)</td>
</tr>
<tr>
<td>Histologic subtype cHL</td>
<td>66 (78)</td>
<td>12 (14)</td>
<td>4 (5)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Nodular sclerosis</td>
<td>66 (78)</td>
<td>12 (14)</td>
<td>4 (5)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Mixed cellularity</td>
<td>66 (78)</td>
<td>12 (14)</td>
<td>4 (5)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Lymphocyte-rich</td>
<td>66 (78)</td>
<td>12 (14)</td>
<td>4 (5)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Lymphocyte-depleted</td>
<td>66 (78)</td>
<td>12 (14)</td>
<td>4 (5)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Total lymph node involvement</td>
<td>31 (36)</td>
<td>32 (38)</td>
<td>33 (39)</td>
<td>34 (40)</td>
</tr>
<tr>
<td>Immunohistochemistry – HRS cells</td>
<td>31 (36)</td>
<td>32 (38)</td>
<td>33 (39)</td>
<td>34 (40)</td>
</tr>
<tr>
<td>Bcl-2+ > 50%</td>
<td>26 (31)</td>
<td>27 (32)</td>
<td>28 (34)</td>
<td>29 (35)</td>
</tr>
<tr>
<td>Survivin > 50%</td>
<td>29 (34)</td>
<td>30 (36)</td>
<td>31 (37)</td>
<td>32 (38)</td>
</tr>
<tr>
<td>Active caspase 3+ > 5%</td>
<td>22 (26)</td>
<td>23 (28)</td>
<td>25 (30)</td>
<td>26 (31)</td>
</tr>
<tr>
<td>Ki-67 > 50%</td>
<td>38 (45)</td>
<td>40 (48)</td>
<td>42 (50)</td>
<td>44 (52)</td>
</tr>
<tr>
<td>CD68+ TAM > 25%</td>
<td>33 (39)</td>
<td>35 (41)</td>
<td>37 (44)</td>
<td>39 (46)</td>
</tr>
</tbody>
</table>

*Stage IIB with bulky mediastinal tumor and/or extranodal disease.

Statistical Methods
The main focus of the study, overall survival (OS), was measured from the start of treatment to the date of the last follow-up (censored patients alive by the time of analysis) or time of death from any cause. As a secondary endpoint, event-free survival (EFS) was evaluated from initiation of treatment to the date of disease progression, relapse, or death from any cause, or if none of these events have occurred, the date of the last follow-up (censored patients). Survival analysis was performed using the Kaplan-Meier method. The statistical significance of differences in EFS and OS between groups of patients was estimated by the log rank test. Multivariate analysis was performed using the Cox proportional hazards model. All tests were two-sided with a threshold of p = 0.05. All statistical analyses were performed using the 2007 Statistica® version 8.0 (StatSoft, Inc., Tulsa, OK, USA) licensed statistical analysis software package.
2 clinical), a prognostic score was developed. The number of patients in each group was as follows: 12 patients had no factors; 16 had 1; 32 had 2; 14 had 3; 10 had 4; and 1 patient had all 5 factors. Intergroup analysis showed no difference in OS between patients having a cumulative score of 0 and 1 (p = 1.0) and those with a score of 4 and 5 (p = 0.98). On the basis of these results, we propose a survival model that stratifies patients into 4 risk groups according to the number of adverse prognostic factors. Patients with no or 1 prognostic factor are considered low risk, 2 intermediate, 3 high, and 4–5

![Fig. 1. Event-free survival curves (left) and overall survival curves (right) based on A Bel-2, B CD68, C total lymph node involvement (TLNI), D International Prognostic Score (IPS), and E bulky disease.](image-url)
very high risk. Using these definitions, 33% of patients in this series were considered low risk, 38% intermediate, 16% high, and 13% very high. Group comparison showed a statistically significant difference in prognosis: low vs. intermediate risk, \((log \ rank, p = 0.029) \); intermediate vs. high risk \((log \ rank, p = 0.040) \); high vs. very high risk, \((log \ rank, p = 0.021) \) (fig. 1). The 5-year OS was progressively worse according to the risk groups: in low risk patients, it was 100%, intermediate 78%, high 45%, and very high 0% \((chi \ square = 42.13, p < 0.001) \) (fig. 2).

Discussion

The results of our study confirmed 5 independent indicators affecting OS in advanced stage HL. These are overexpression of Bcl-2 (> 50%); increased number of CD68+ TAM (> 25%); TLNI; high IPS (> 2); and bulky disease. Of these, increased number of CD68+ TAM, IPS > 2, and bulky disease also affected EFS. Combining the identified unfavorable prognostic factors for OS (Bcl-2; CD68; TLNI; IPS; and bulky disease), we designed a prognostic model which stratifies patients into 4 risk groups.

Certain indicators suggest that poorer outcome might depend on a specific molecular mechanism influencing therapy response [22, 23]. The role of Bcl-2 has been widely debated in the literature without concordant results. Several reports indicated that its overexpression in HRS cells is a predictor of poor outcome [24, 25]. Garcia et al. [11] tried to incorporate biologic variables into the standard clinical prognostic scoring system. Shorter survival was directly connected with Bcl-2 overexpression and other variables such as Bcl-Xl, p53, Bax, MIB1, and the apoptotic index. Also, Sup et al. [26] demonstrated that Bcl-2 but not p53 and p21 was an independent prognostic factor for survival. When clinical parameters (age \(\geq 45 \) and stage III or IV) were added, the scoring system stratified patients into 3 risk groups (with 0, 1, or 2–3 risk factors) and progressively worse OS and failure-free survival (FFS). More recently, Sanches-Espiridon et al. [27] identified Bcl-2 to be one of the best predictor genes in advanced stage cHL patients. Bcl-2 is integrated into a gene prediction model (including functional pathways: cell cycle, apoptosis, macrophage activation, and interferon regulatory factor 4) which stratified low- and high-risk patients with different FFS rates. However, other reports show that Bcl-2 is not significantly related to outcome [9, 28, 29]. In our study, patients with Bcl-2 overexpression had a worse outcome univariately as well as in a multivariate model adjusted for other relevant risk factors.

Another adverse prognostic factor is the increased number of TAM, described both in solid tumors and B-cell malignancies [30–32]. In addition, several studies revealed a prognostic relevance in HL [33–35]. However, many questions regarding phenotype, chemotaxis, and their influence on treatment resistance in HL remain unanswered. Steidl et al. [13] showed that an elevated number of CD68+ TAM predicts poor outcome in advanced stage patients, while their absence in limited stage disease correlated with total long-term disease-specific survival. Additionally, Kamper et al. [36] indicated that high expression of the macrophage/monocyte-related antigens CD68 and CD163 was significantly correlated with decreased OS and EFS, with increased CD68 being an independent factor for survival. Gene expression profiling studies also established the significance of TAM in relation to primary treatment failure [13, 37]. On the other hand, Azambuja et al. [38] could not verify the relationship between the number of CD68+ and CD163+ macrophages with clinical outcome. In our study, we were able to demonstrate that an increased number of TAM had a worse prognosis with respect...
to OS and EFS. Furthermore, the Cox multivariate model revealed that the prognostic impact was independent from other relevant factors for OS and EFS.

TAM are part of the nursing cells in the tumor microenvironment. It is implicated that the unique local microenvironment effect (also referred to as the ‘premetastatic niche’) might be responsible for homing of circulating HL cells to contiguous lymph nodes early in the course of disease, determining the pattern of metastatic dissemination [39, 40]. Cell line studies showed that clonotypic B cells appears to be responsible for the maintenance and generation of HRS cells [41]. Also, there are findings revealing high levels of circulating clonotypic B cells in stage IV HL as well as in early-stage disease in most patients [41].

In the study by Wasielewski et al. [20] involving 965 nodular sclerosis subtype cHL patients of all stages, the authors found that TLN1 with tumor and reactive cells was present in 79% cases, without influencing survival. In our study, 31 (36%) cases with neoplastic and inflammatory TLN1 (26 of them with nodular sclerosis) had worse OS both in the univariate and the multivariate model adjusted for other relevant risk factors. Additionally there was a non-significant trend towards lower EFS in this group. The interaction between tumor stem cells and the formation and anatomical organization of the specialized environment which supports them is still under investigation [42]. Whether TLN1 represents a part of this process, possibly influencing the clinicobiological variability of the disease, is yet to be clarified.

Our research also confirmed the predictive value of the clinical factors IPS and bulky disease, usually considered important in HL prognosis. We developed a prognostic model for OS, which integrates both clinical and tissue-based variables, in order to stratify advanced stage cHL patients into risk groups. The key parameters for stratification were Bel-2 positivity in > 50% of HRS cells, > 25% CD68+ TAM, neoplastic and inflammatory TLN1, IPS > 2, and bulky disease. Based on the cumulative score of these risk factors, patients were stratified into 4 groups (low 0–1, intermediate 2, high 3, very high 4–5 risk), each with progressively reduced OS. According to our findings, patients having 2 or more risk factors at the time of the initial diagnosis are at higher risk of a poor outcome. This model, which enables precise risk stratification at presentation, may be used to guide an individual treatment approach, although its predictive value needs to be confirmed in studies with larger numbers of patients.

Acknowledgement

The study was supported in part by the Ministry of Education and Science of the Republic of Serbia (grant no. 41025).

Disclosure Statement

The authors indicate no potential conflicts of interest.

References

Advanced Hodgkin’s Lymphoma Prognosis

