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Introduction

 The important role of bile acids as intestinal detergents 
for the absorption of dietary lipids has been established 
for many years. However, the discovery in 1999 of a nu-
clear receptor for bile acids opened a new chapter in the 
bile acid field, one in which bile acids function as hor-
mones to regulate diverse physiologic processes  [1–3] . 
Bile acids are now known to signal through two receptors: 
the farnesoid X receptor (FXR), which is a member of the 
nuclear receptor family of ligand-activated transcription 
factors  [1–3] , and Gpbar1/M-BAR/TGR5, a G protein-
coupled receptor  [4, 5] . In this review, we will focus on 
FXR and its downstream effector, fibroblast growth fac-
tor (FGF)15/19, and their effects on bile acid homeostasis 
and metabolism.

  Nuclear Bile Acid Receptor, FXR 

 FXR was originally named based on its weak, non-
physiological activation by the terpenoid farnesol  [6] . 
Subsequent studies showed that FXR is activated by phys-
iological concentrations of bile acids, including the pri-
mary bile acids cholic acid and chenodeoxycholic acid 
 [1–3] . FXR regulates the expression of target genes by 
binding to DNA response elements, termed farnesoid X 
response elements (FXREs), as a heterodimer with the 
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 Abstract 

 While it has long been recognized that bile acids are essen-
tial for solubilizing lipophilic nutrients in the small intestine, 
the discovery in 1999 that bile acids serve as ligands for the 
nuclear receptor farnesoid X receptor (FXR) opened the 
floodgates in terms of characterizing their actions as selec-
tive signaling molecules. Bile acids act on FXR in ileal entero-
cytes to induce the expression of fibroblast growth factor 
(FGF)15/19, an atypical FGF that functions as a hormone. 
FGF15/19 subsequently acts on a cell surface receptor com-
plex in hepatocytes to repress bile acid synthesis and gluco-
neogenesis, and to stimulate glycogen and protein synthe-
sis. FGF15/19 also stimulates gallbladder filling. Thus, the 
bile acid-FXR-FGF15/19 signaling pathway regulates diverse 
aspects of the postprandial enterohepatic response. Phar-
macologically, this endocrine pathway provides exciting 
new opportunities for treating metabolic disease and bile 
acid-related disorders such as primary biliary cirrhosis and 
bile acid diarrhea. Both FXR agonists and FGF19 analogs are 
currently in clinical trials.  © 2015 S. Karger AG, Basel 
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9-cis retinoic acid receptor (RXR). The consensus FXRE 
is composed of two copies of the nuclear receptor binding 
motif, AGGTCA, organized as an inverted repeat and 
separated by a single nucleotide  [7] . Many FXR target 
genes have been identified in liver and intestine as well as 
other tissues  [8, 9] .

  The physiologic role of FXR as a bile acid receptor was 
confirmed in FXR-knockout (KO) mice, which have in-
creased bile acid synthesis and pool size  [10] . When chal-
lenged with a diet containing cholic acid, FXR-KO mice 
had severe hepatotoxicity and wasting that did not occur 
in wild-type mice  [11] . FXR-KO mice also had elevated 
serum cholesterol, triglycerides, phospholipids, and low-
density and very-low-density lipoproteins  [11] . Thus, 
FXR plays a broad role in regulating lipid homeostasis.

  FXR-FGF15/19 Enterohepatic Pathway 

 FXR is expressed in enterocytes throughout the small 
intestine and colon  [12] , where it induces genes such as 
the ileal acid-binding protein and organic solute trans-
porter α/β, which are involved in regulating bile acid ho-
meostasis  [13] . Among the genes induced by FXR activa-
tion in murine ileum is  Fgf15 , which encodes an atypical 
FGF that is secreted into the portal circulation to function 
as a hormone  [14] . FXR binds to a response element lo-
cated in the second intron of the  Fgf15  gene to directly 
regulate its transcription  [14] . Following its induction by 
bile acids, FGF15 has two prominent effects. First, it cir-
culates to liver, where it inhibits bile acid synthesis by re-
pressing transcription of cholesterol 7α-hydroxylase 
  (Cyp7a1) , which encodes the first and rate-limiting en-
zyme in the classic bile acid synthetic pathway. FGF15-
KO mice have increased CYP7A1 expression and activity 
and a corresponding increase in bile acid synthesis  [14] . 
Second, FGF15 causes the gallbladder to fill with bile  [15] . 
FGF15-KO mice have a virtually empty gallbladder, even 
in the fasted state, when the gallbladder is normally full. 
Notably, injection of FGF15-KO mice with recombinant 
FGF15 causes a rapid filling of the gallbladder without 
stimulating bile flow. This effect is mediated in part via 
relaxation of the gallbladder smooth muscle  [15] . Thus, 
FGF15 released from the small intestine plays a crucial 
role in coordinating bile acid homeostasis in other tissues 
including the liver and gallbladder. In liver, FGF15 acts 
through a cell surface receptor complex composed of the 
FGF receptor 4 (FGFR4), which has tyrosine kinase activ-
ity, and βKlotho, a single transmembrane protein. Both 
FGFR4-KO and βKlotho-KO mice phenocopy the 

FGF15-KO mice in having increased  Cyp7a1  expression 
and small gallbladders  [16, 17] .

  The human ortholog of FGF15 is FGF19. At the time 
they were cloned, the fact that FGF15 and FGF19 share 
only 53% amino acid identity left the nature of their rela-
tionship in question, hence their different names  [18, 19] . 
However, there is now definitive evidence that FGF15 
and FGF19 are orthologous proteins. For this reason, we 
refer to the hormone as FGF15/19 unless referring to a 
specific ortholog. The genes for human, mouse, and ze-
brafish FGF15/19 are on syntenic regions of the genomes 
 [20] , and the FXR binding site is conserved  [14, 21] . Con-
sistent with this latter finding,  FGF19  expression in hu-
mans is also regulated by bile acids. In humans, serum 
FGF19 levels have a diurnal rhythm with peaks occurring 
90–120 min after the postprandial release of bile acids 
 [22] . This peak precedes the repression of bile acid syn-
thesis. Conversely, FGF19 levels decreased in subjects ad-
ministered the bile acid sequestrant, cholestyramine  [22] . 
Patients with bile acid diarrhea, who overproduce bile ac-
ids, also have lower circulating FGF19 levels  [23] . Recent-
ly, an FGF19 analog was shown to efficiently repress bile 
acid synthesis in healthy volunteers taking part in a phase 
1 clinical study  [24] . Thus, FGF19 is induced by FXR and 
represses bile acid synthesis in humans.

  Mechanism of  CYP7A1  Repression 

 Previous studies have shown that the feedback regula-
tion of  CYP7A1  by bile acids is mediated by a nuclear re-
ceptor signaling cascade involving FXR and small het-
erodimer partner (SHP), an atypical orphan nuclear re-
ceptor lacking a DNA binding domain that functions as 
a potent transcriptional repressor  [25, 26] . In liver, tran-
scription of the  SHP  gene is induced by bile acids via FXR. 
SHP, in turn, binds to the  CYP7A1  promoter to repress 
gene transcription through mechanisms that involve re-
cruitment of various proteins, including the mSin3A-
Swi/Snf complex, G9a methyltransferase, and the core-
pressor subunit GPS2  [27–29] . Mice lacking SHP have 
increased basal  Cyp7a1  expression  [30, 31] . SHP is re-
cruited to the  Cyp7a1  gene via interactions with the nu-
clear receptors LRH-1 and HNF4α, which both bind to a 
promoter region that is important for bile acid-mediated 
repression  [25, 26, 32, 33] . Studies with liver-specific KO 
mice have shown that either LRH-1 or HNF4α is capable 
of recruiting SHP to the  Cyp7a1  promoter  [34] .

  Notably, SHP is required for FGF15/19 to efficiently 
repress bile acid synthesis. Mice lacking SHP are refrac-
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tory to the inhibitory effects of either FXR agonists or 
FGF15/19 on  Cyp7a1  expression  [14, 34] . HNF4α and 
LRH-1 induce active transcription histone marks on the 
 Cyp7a1  promoter that are reversed by FGF19 in a SHP-
dependent manner  [34] . FGF19 does not change SHP 
protein levels or its localization on the  Cyp7a1  gene pro-
moter, suggesting that FGF19 stimulates the recruitment 
of other factors to the SHP complex  [34] . Since basal 
 Fgf15  expression in intestine is low, its induction is re-
quired for repression of  Cyp7a1   [14] . In contrast, basal 
expression of  Shp  in liver is relatively high. Thus, further 
induction of  Shp  in liver by FXR contributes to – but is 
not essential for – repression of  Cyp7a1 . This model is 
borne out by studies with intestine- and liver-specific 
FXR-KO mice: elimination of FXR in intestine disrupts 
FXR-mediated suppression of  Cyp7a1 , whereas elimina-
tion of FXR in liver does not  [35] .

  Additional Metabolic Actions of FXR and FGF15/19 

 The biological actions of FXR extend well beyond the 
regulation of bile acid homeostasis  [8, 9, 36] . As men-
tioned above, FXR exerts important effects on lipopro-
teins and lipid metabolism. Activation of FXR with either 
bile acids or synthetic FXR agonists decreases hepatic and 
circulating triglyceride concentrations  [37, 38] . FXR also 
regulates glucose homeostasis. FXR-KO mice are insulin 
resistant and glucose intolerant  [38–40] . Conversely, 
FXR activation improves insulin sensitivity and glycemia 
in rodent models of metabolic disease. These effects are 
due in part to FXR-mediated repression of hepatic gluco-
neogenesis and induction of hepatic glycogen synthesis 
 [38–40] .

  Likewise, FGF15/19 has broad biological effects. Like 
insulin, FGF15/19 levels rise following a meal  [22] , and it 
stimulates hepatic protein and glycogen synthesis by act-
ing on the FGFR4/βKlotho receptor complex in hepato-
cytes  [41] . However, peak blood levels of FGF15/19 occur 
well after those of insulin, and its effects are mediated not 
by the AKT/PI3K signaling cascade but rather through an 
ERK1/2 pathway that activates components of the protein 
translation machinery and stimulates glycogen synthase 
activity  [41] . FGF19 also represses gluconeogenesis 
through a mechanism involving the dephosphorylation 
and inactivation of the transcription factors CREB and 
FoxO1  [42, 43] , which are both positive regulators of glu-
coneogenic genes. Thus, FGF15/19 acts subsequent to in-
sulin to regulate diverse aspects of the postprandial re-
sponse.

  Pharmacologically, FGF15/19 also regulates energy 
expenditure and insulin sensitivity. Transgenic mice 
overexpressing FGF19 under the control of the muscle-
specific myosin light chain promoter weighed less than 
their wild-type littermates  [44] . Although FGF19-trans-
genic mice had increased food intake, they also had a 
higher metabolic rate. When challenged with a high-fat 
diet, FGF19-transgenic mice remained lean and had de-
creased muscle and liver triglyceride levels. These mice 
also had lower serum glucose and insulin levels, improved 
glucose tolerance, and improved insulin sensitivity com-
pared to wild-type littermates  [44] . Similar effects were 
seen after administration of recombinant human FGF19 
to mice maintained on a high-fat diet. FGF19 improved 
glucose tolerance and decreased serum insulin and tri-
glycerides  [45] . These data suggest FGF19 acts as an insu-
lin sensitizer.

  A potential drawback of administering FGF19 as an 
antidiabetes drug is that it promotes liver growth at phar-
macologic concentrations. FGF19 has been implicated in 
liver tumorigenesis  [46] , and chronic exposure to FGF19 
causes hepatocellular carcinoma in mice  [47] . Notably, 
however, variants of FGF19 have been developed that are 
nontumorigenic but still retain the ability to regulate bile 
acid metabolism  [48] . One of these variants was shown to 
suppress bile acid synthesis in humans, providing direct 
evidence that FGF19 regulates bile acid homeostasis in 
humans  [24] .

  Recent studies have shown that FGF15/19 can regulate 
metabolism by acting on the brain. Intracerebroventricu-
lar injection of FGF19 activated ERK1/2 in the hypothal-
amus of  ob/ob  mice and increased energy expenditure 
and improved glycemia in mouse and rat models of obe-
sity  [45, 49–51] . Interestingly, FGF19 administered cen-
trally increased glucose disposal in  ob/ob  mice via an in-
sulin-independent mechanism  [51] . It remains to be de-
termined precisely where and how FGF15/19 acts on the 
brain to regulate metabolism and whether FGF15/19 
crosses the blood-brain barrier at physiologic concentra-
tions to regulate these processes.

  Closing Comments 

 The past 15 years have witnessed explosive growth in 
our understanding of bile acids as signaling molecules. 
Acting as hormones themselves and as inducers of 
FGF15/19, bile acids regulate diverse facets of hepatic 
metabolism ranging from their own synthesis to protein 
and carbohydrate homeostasis. Pharmacologically, 
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FXR agonists and FGF15/19 exert profound effects on 
metabolism, including effects on insulin sensitivity and 
energy expenditure. Remarkably, both FXR agonists 
and FGF19 analogs are already in clinical trials for treat-
ing various enterohepatic disorders including primary 
biliary cirrhosis, bile acid diarrhea, and nonalcoholic 
steatohepatitis. Thus, the future looks bright for har-
nessing the FXR-FGF15/19 pathway for treating human 
disease.
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