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 Introduction 

 Bile acid transport into the liver and intestine is 
maintained by transport proteins, present at the apical 
membrane of ileocytes and basolateral membrane of he-
patocytes. In this review, we focus on hepatic bile acid 
uptake via sodium taurocholate cotransporting poly-
peptide (NTCP) and intestinal bile acid uptake via api-
cal sodium-dependent bile acid transporter (ASBT) and 
the (possible) benefits of pharmacologically targeting 
these transporters in various pathophysiological condi-
tions. First, the discovery of NTCP as the key uptake 
receptor for hepatitis B and D virus (HBV/HDV) point-
ed to novel applications of NTCP targeting in virology. 
Second, physiological and pharmacological downregu-
lation of the hepatic and intestinal bile acid uptake ma-
chinery during cholestasis might provide hepatoprotec-
tion. Third, the modulation of bile acid transport is ex-
pected to alter bile acid dynamics, which in turn will 
affect the activation of the main bile acid sensors farne-
soid X receptor (FXR) and transmembrane G protein-
coupled receptor 5 (TGR5), with multiple consequences 
on metabolism of bile acids, cholesterol, lipids and 
 glucose.
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 Abstract 

  Background:  Bile acids are potent signaling molecules that 
regulate glucose, lipid and energy homeostasis predomi-
nantly via the bile acid receptors farnesoid X receptor (FXR) 
and transmembrane G protein-coupled receptor 5 (TGR5). 
The sodium taurocholate cotransporting polypeptide 
(NTCP) and the apical sodium dependent bile acid trans-
porter (ASBT) ensure an effective circulation of (conjugated) 
bile acids. The modulation of these transport proteins af-
fects bile acid localization, dynamics and signaling. The 
NTCP-specific pharmacological inhibitor myrcludex B inhib-
its hepatic uptake of conjugated bile acids. Multiple ASBT-
inhibitors are already in clinical trials to inhibit intestinal bile 
acid uptake. Here, we discuss current insights into the con-
sequences of targeting bile acid uptake transporters on sys-
temic and intestinal bile acid dynamics and discuss the pos-
sible therapeutic applications that evolve as a result. 
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  Bile Acid Formation and the Enterohepatic 

Circulation 

 Bile excretion plays a pivotal role in the elimination of 
endogenous and exogenous (toxic) compounds, such as 
bilirubin, heavy metals and drug metabolites. Bile mainly 
contains phospholipids, cholesterol and bile acids com-
bined in micelles  [1] . Bile acids are amphipathic molecules, 
characterized by the ability to form an interface between 
lipids and water. In the small intestine, bile acids improve 
dietary lipid digestion and transport across enterocytes.

  Synthesis of bile acids starts in the pericentral hepato-
cytes via the rate-limiting conversion of cholesterol into 
7α-hydroxycholesterol by the hepatic microsomal en-
zyme cholesterol 7α-hydroxylase (CYP7A1). After a com-
plex biosynthetic pathway involving multiple enzymes, 
the main primary bile acids chenodeoxycholic acid 
(CDCA) and cholic acid (CA) are formed ( ∼ 80% of the 
human bile acid pool)  [2] . Specifically in mice, CDCA is 
converted to muricholic acid. In the last step of biosynthe-
sis, bile acids undergo conjugation with glycine (predom-
inantly in humans) or with taurine (predominantly in ro-
dents). Secreted bile acids are predominantly in their con-
jugated form, that is, in the negatively charged state, which 
prevents passive membrane-diffusion. Secondary bile ac-
ids are formed from these primary bile acids by bacterial 
modification in the distal intestine  [3] . Bile acids are effi-
ciently retained within the enterohepatic circulation (only 
3–5% is lost via feces), due to reabsorption in the terminal 
ileum by the apical sodium-dependent bile acid transport-
er ( SLC10A2 /ASBT) and excretion into portal blood by 
the heterodimeric organic solute transporter α/β 
( SLC51A/B /OSTα/β) and other basolateral extrusion 
pathways in ileocytes  [4, 5] . In physiological situations, 
fecal bile acid loss is compensated for by de novo synthesis 
from cholesterol in the liver, and thereby boosts choles-
terol elimination from the body  [6] . Bile acids are eventu-
ally recycled from portal blood at the hepatic basolateral 
membrane by 2 transport systems: the sodium-dependent 
taurocholate cotransporting polypeptide  ( SLC10A1 /
NTCP) and members of the sodium-independent organic 
anion transporting polypeptide ( SLCO /OATP) transport 
family  [7, 8] . In humans, the physiological bile acid con-
centration ranges from <5 μ M  (fasting) to 3–7 μ M  (post-
prandial) in systemic blood. In portal blood, the post-
prandial bile acid peak is more evident (from 4–27 to 22–
55 μ M )  [9, 10] . Thus, the hepatic uptake machinery 
efficiently limits the escape of bile acids to the general cir-
culation, with a first-pass extraction fraction ranging from 
50 to 90% depending on the bile acid structure  [11] .

  Hepatic Basolateral Uptake Systems 

 NTCP is a family member of the solute carrier 10 fam-
ily and is present on the basolateral membrane of hepato-
cytes. NTCP adopts a dimeric or even higher order qua-
ternary structure, in which the individual subunits form 
functional units  [12] . Recently, the crystal structure of 
ASBT was solved revealing a structure with 9 transmem-
brane domains, with an exoplasmic N terminus and cy-
toplasmic C terminus  [13] , and a similar conformation 
might be expected for NTCP. NTCP-mediated uptake of 
taurocholate was demonstrated with published K m  values 
that vary from 5 to 84 μ M  for human NTCP and 8–61 μ M  
for rodent NTCP  [14] . Besides bile acids, NTCP is a trans-
porter of steroidal hormones and a variety of drugs  [15, 
16] . In the liver, NTCP is distributed equally along all 
liver lobules, but uptake of conjugated bile acids occurs 
predominantly in periportal cells (zone 1), as these are 
exposed to the highest concentrations of bile acids  [17] . 
In humans, Ho et al.  [18]  described ethnicity-dependent 
polymorphisms that are associated with decreased trans-
port function in vitro. However, to date, only one indi-
vidual with NTCP deficiency was described, featuring a 
single homozygous mutation (p.R252H), phenotypically 
characterized by high plasma conjugated bile acid levels 
without any signs of liver injury or pruritus  [19] . Simi-
larly, a subset of  Slc10a1 /NTCP knockout mice displays 
strongly elevated conjugated bile acids levels in plasma 
 [20] , confirming a primary role for NTCP in hepatic 
clearance of conjugated bile acids. In addition, several 
adult NTCP knockout mice showed physiological bile 
acid levels, indicating that an NTCP-independent uptake 
of conjugated bile acids must exist.

  The presence of additional Na + -dependent mem-
brane transporters has been suggested, in particular, bile 
acid transport by microsomal epoxide hydrolase  [21] , 
but little experimental evidence supports this notion 
 [22] . Hepatic bile acid uptake can also be mediated by 
(one or more members of) the Na + -independent OATP 
transporter family. All OATPs are 12 transmembrane 
domain glycoproteins with broad substrate preference, 
such as (un)conjugated bile acids, bilirubin and numer-
ous drugs  [23] . The most abundant hepatic OATP sub-
families are OATP1A and OATP1B, and are designated 
Oatp1a1, Oatp1a4 and Oatp1b2 in rodents  [8] . It is dif-
ficult to estimate the role of each single OATP-isoform 
in vivo, as there is large substrate overlap and rodent 
Oatps have no direct human orthologue  [24] . In hu-
mans, 2-gene biallelic human OATP1B1 and OATP1B3 
deficiency is known as the Rotor syndrome, character-
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ized by high conjugated plasma bilirubin levels  [25] . Ev-
idence for human OATP polymorphisms affecting en-
dogenous bile acid uptake is sparse. Interestingly, 
mice lacking all Oatp1a/1b-family members ( Slco1a/1b  
knockout mice) display 13-fold elevated levels of uncon-
jugated bile acid in blood  [26] , whereas conjugated bile 
acid levels remained mostly unchanged, and similar re-
sults were found in knockout mice lacking only  Slco1b2  
 [27] . The role of the rodent Oatp1a-isoforms in bile acid 
transport is less obvious; nevertheless, taurocholate up-
take was reduced in primary hepatocytes isolated from 
Oatp1a4-null mice, and to slighter extent in Oatp1a1-
null mice  [28] . Other studies suggest that Oatp1a1 and 

Oatp1a4 preferably transport secondary unconjugated 
bile acids, thereby altering intestinal bile acid metabo-
lism  [29, 30] .

  NTCP as Receptor of HBV/HDV 

 Beside the role of NTCP as major transporter for con-
jugated bile acids, NTCP was recently found to be the 
main receptor for HBV and HDV viral particles  [31] , and 
the specific NTCP inhibitor myrcludex B is currently be-
ing tested in phase II trials as an HBV/HDV entry inhib-
itor  [32, 33]  ( fig. 1 ). Myrcludex B is a synthetic lipopep-

  Fig. 1.  NTCP and ASBT: topology and li-
gands. Both NTCP (upper panel) and 
ASBT (lower panel) from the SLC10 family 
contain 9 transmembrane spanning do-
mains. Conjugated bile acids are natural 
substrates for these transporters, and re-
cently the preS1 domain of HBV was found 
to specifically bind to NTCP. Also, the 
HBV-derived lipopeptide myrcludex B 
strongly binds to and inhibits NTCP in vi-
tro and in vivo. Many ASBT-specific inhib-
itors (e.g. A4250) were developed over the 
past decade to increase fecal bile acid excre-
tion. 
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tide based on the preS1 domain of the HBV envelop pro-
tein targeting NTCP, and effectively inhibits HBV entry 
in vitro and in vivo  [34, 35] . Pharmacokinetic studies with 
myrcludex B show rapid hepatic accumulation (within 
minutes)  [20]  where it has a half-life of  ∼ 12 h. Liver-spe-
cific binding is also observed in non-HBV susceptible an-
imals (dogs, rats and mice)  [36]  and NTCP specificity was 
recently confirmed using NTCP knockout mice  [20] . 
HBV entry inhibition is clinically important in the treat-
ment of HBV/HDV infection, where it could be applied 
in combination with other anti-viral drugs, such as inter-
feron or tenefovir. An interim report of a phase Ib/IIa 
clinical trial showed a reduction of HDV RNA levels to-
wards undetectable levels upon 12 or 24 weeks of treat-
ment especially using a combination of myrcludex B and 
interferon, although HBsAg did not show any reduction 
with this treatment duration  [32] . Myrcludex B treatment 
resulted in elevated plasma bile acids levels, which was 
well tolerated and the drug showed no adverse effects.

  Inhibition of Bile Acid Uptake to Ameliorate 

Cholestatic Liver Injury 

 Cholestatic liver damage occurs when bile flow is im-
peded, leading to the accumulation of toxic bile acids 
within hepatocytes and causing liver damage, inflamma-
tion and fibrosis. Current therapies in cholestatic liver 
disease are recently reviewed by Beuers et al.  [37] . Nucle-
ar receptors (NRs), bile acid transporters and hepatic en-
zymes play a key role in orchestrating bile acid metabo-
lism to protect against the accumulation of toxic bile acids 
 [38] . Classical intrahepatic bile acid sensing by FXR  [39–
41]  leads to the recruitment of the atypical NR that has 
only a ligand-binding domain, called short heterodimer 
partner (SHP)  [42, 43] , which represses bile acid biosyn-
thesis via the downregulation of CYP7A1. Hepatic FXR 
activation by (semi-)synthetic FXR agonists has been suc-
cessful in cholestatic animal models  [44, 45]  in order to 
induce hepatic bile acid efflux and reduce bile acid uptake 
and such therapies are now being tested in phase II and 
III trials in PBC and primary sclerosing cholangitis  [46] . 
In addition to FXR-dependent transcriptional repression 
of the bile acid uptake machinery, posttranscriptional 
regulation of the plasma membrane expression and func-
tion of NTCP is expected to be relevant during cholesta-
sis, as reviewed elsewhere  [47] . So far, the effectiveness of 
(further) inhibition of basolateral hepatic bile acid uptake 
in the context of cholestasis was only studied using 
 OATP1A1 knockout mice, which were not protected 

against hepatic injury after bile-duct ligation  [48] . The 
role of additional (pharmacological) NTCP-inhibition 
during cholestasis is not reported yet. The finding that 
myrcludex B is well tolerated, even at dosages that inhib-
it NTCP and lead to increased bile acid levels in plasma, 
makes this strategy likely to be tested in vivo.

  When we focus on the modulation of intestinal bile 
acid transport, most studies investigated intestinal bile 
acid sequestrants (e.g. cholestyramine and colesevelam) 
as first-line agents in the treatment of cholestatic pruritis. 
Colesevelam proved to be effective in reducing plasma 
bile acid levels by  ∼ 50%, but failed to reduce pruritis  [49] . 
Currently, clinical studies are evaluating ASBT inhibitors 
as a novel pharmacological treatment for cholestasis. The 
rational of ASBT inhibition is based on an increase of fe-
cal bile acid elimination and preventing bile acid return 
to the liver, thereby potentially reducing the bile acid pool 
by 80%. The ASBT inhibitor A4250, previously used in a 
clinical phase I study  [50] , showed improvement of cho-
lestatic liver injury in multi-drug resistance P-glycopro-
tein 2-deficient mice  [51] . In a similar study, 2 weeks of 
treatment with SC-435, a different ASBT inhibiting small 
molecule, demonstrated reduced bile acid pool size and 
attenuation of cholestasis in the same mouse model  [52] . 
At present, human studies are being performed, but the 
outcome of these promising studies is not published yet 
(https://clinicaltrials.gov/ct2/show/NCT02061540).

  Targeting FXR tissue-specifically during cholestasis 
attracted considerable attention since the discovery of fi-
broblast growth factor 15/19 (FGF15/19). This hormone, 
when released from the gut, binds to the tyrosine kinase 
receptor FGF receptor 4/β-Klotho on hepatocytes, which 
activates the jun N-terminal kinase 1/2 signaling pathway 
 [53] . Intestinal FXR activation  [54]  and the FGF19 mi-
metic M70  [55, 56]  dampen cholestatic liver injury by 
strongly reducing hepatic bile acid synthesis and the cir-
culating bile acid pool. So, mouse studies clearly show 
hepatoprotection through (gut-specific) FGF15/19 sig-
naling, primarily by reducing bile acid pools, sharing its 
mode of action with ASBT-inhibition. NGM282 (the en-
gineered variant of human FGF19) is now tested in a 
phase II trial in PBC patients unresponsive to ursodeoxy-
cholic acid treatment  [57] .

  Bile Acid Dynamics in Relation to the Metabolic State 

 Besides the role of bile acids in cholesterol and lipid 
metabolism, bile acids are important signaling molecules 
regulating glucose metabolism, inflammation and energy 
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expenditure. Detection of bile acids is mostly mediated 
via the receptors FXR and TGR5, and not exclusively in 
the liver and intestine  [58, 59] . Targeting bile acid signal-
ing is, therefore, appealing to treat metabolic diseases 
such as diabetes and atherosclerosis. In the following sec-
tions, we discuss the (possible) beneficial metabolic ef-
fects of modulation of bile acid dynamics by the inhibi-
tion of ASBT and NTCP transport activity as this is ex-
pected to alter the FXR/TGR5 activity.

  Inhibition of intestinal bile acid uptake specifically via 
ASBT is recognized for its low-density lipoprotein (LDL)-
cholesterol lowering effect  [60] . Preclinical studies fur-
ther showed that ASBT-inhibition reduces hepatic tri-
glyceride and cholesterol accumulation in high fat diet-
fed mice  [61, 62] . Similarly, bile acid–binding resins, 
including cholestyramine and colesevelam, have been 
shown to reduce serum total sterols including LDL-cho-
lesterol values. This effect is mainly due to increase in 
cholesterol catabolism to replenish bile acids lost via the 
feces. However, their use for this application is limited, 
mainly because compliance remains a challenge due to 
the gastrointestinal side effects.

  Bile acid–binding resins also have a beneficial effect on 
glucose handling. For example, the bile-acid sequestrant 
Colestilan induces glucagon-like peptide 1 (GLP1) re-
lease from the colon  [63] . GLP1 increases insulin secre-
tion and improves insulin sensitivity. Similarly, cole-
sevelam improved glucose homeostasis. This effect seems 
mostly mediated by TGR5 activation  [63, 64] , and par-
tially through the inhibition of FXR signaling  [65] . Bile 
acid–induced GLP1 release occurs upon the activation of 
TGR5 at the basolateral (blood) side of L-cells  [66, 67] . 
Nevertheless, ASBT inhibitors and bile acid–binding res-
ins both stimulate the release of enterohepatic hormones, 
including GLP-1, and inhibit the uptake of bile acid into 
the circulation. In our view, the most direct explanation 
for this apparent discrepancy is that TGR5-mediated ef-
fects occur after (passive) bile acid translocation to the 
basolateral side of the colonocyte ( fig. 2 ). ASBT-inhibi-
tion and bile-acid sequestration result in the increased 
presence of bile acid in the colon. Bile acid sequenstrants 
do not covalently bind bile acids, and some diffusion is 
still likely. The secondary bile acids lithocholic and de-
oxycholic acid, (and their corresponding taurine and gly-

  Fig. 2.  Enterohepatic circulation of bile ac-
ids.  a  Overview of the distinct hepatic and 
intestinal bile acid transporters. The key 
transporters are BSEP, ASBT, OSTα/β, 
OATP and NTCP (schematically depict-
ed). Upon intracellular bile acid sensing, 
FXR/SHP and FGF15/19 become activated 
and regulate bile acid synthesis (i.e. pre-
dominantly CYP7A1). Furthermore, spill-
over of bile acids into the systemic circula-
tion might also activate the TGR5 receptor, 
present on the basolateral side in various 
tissues, such as BAT, muscle and in the co-
lon.  b  Pharmacological inhibition of ileal 
bile acid uptake (by bile acid binding resins 
or ASBT inhibitors) induces the presence 
of bile acids in the colon and increases fecal 
bile acid loss. The latter contributes to cho-
lesterol catabolism. Increased GLP1 release 
in the distal intestine improves systemic 
glucose handling and is likely induced by 
(passive) the translocation of bile acids 
leading to basolateral stimulation of TGR5. 
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cine conjugates) are most potent activators of TGR5 in 
vitro, so local elevation of these bile acid species could 
stimulate GLP-1 release into the circulation. At present, 
it is unclear whether elevated bile acid levels in the sys-
temic circulation also would stimulate GLP1-secretion. 
Thomas et al.  [68]  demonstrated that the positive effects 
on glucose homeostasis of the CA-derived TGR5 agonist 
INT-777 were also mediated by intestinal TGR5. How-
ever, INT-777 was provided orally in this study, so TGR5 
might have been activated from either the systemic circu-
lation or by local diffusion across the colonic epithelium.

  In general, little is known about the influence of endog-
enous circulating bile acids on metabolic processes, and 
whether inhibition of hepatic bile acid (re)uptake boosts 
energy expenditure and/or lipid metabolism. The activa-
tion of TGR5 by bile acids is linked to increased energy ex-
penditure in brown adipose tissue (BAT) and muscle  [69] . 
We postulate that such effects are mimicked by (transient-
ly) increased bile acids levels that would occur with NTCP 
inhibition. This process could also play a role in the benefi-
cial metabolic consequences of bariatric surgery. Bariatric 
procedures might induce bile-acid signaling by increased 
circulating bile acid levels, as shown in several studies  [70, 
71] . Previously, ileal interposition surgery in mice showed 
strongly elevated plasma bile acid levels  [72] , without 
changes in hepatic  Ntcp  mRNA. Beneficial effects of verti-
cal sleeve gastrectomy (VSG) on body weight and glucose 
tolerance are dependent on both FXR  [73]  and TGR5  [74] , 
suggesting that bile acid signaling is indeed relevant. Inter-
estingly, mRNA-seq in VSG mice showed significant 
downregulation of hepatic  Ntcp  and  Oatp1b2 , possibly ex-
plaining the increase in bile acid levels in plasma  [75] .

  What happens to the liver when NTCP is inhibited 
and/or bile acid levels in the systemic circulation in-
crease? TGR5 is not detected in hepatocytes, but is ex-
pressed in sinusoidal endothelial cells where its activation 
has a hepatoprotective role by inducing nitric oxide syn-
thase in a cAMP-dependent manner  [76] . Furthermore, 

TGR5 activation in Kupffer cells decreases the release of 
proinflammatory cytokines IL-6 and TNF-α  [77, 78]  and 
(more generally) dampens macrophage-mediated in-
flammation by inhibiting the NFκB-pathway  [79] . A 
high-fat diet caused more liver steatosis in male TGR5-
knockout mice  [80] , suggesting that TGR5 activation pre-
vents non-alcoholic fatty liver disease. INT-777 reduces 
liver fatty acid and triglyceride content as well as plasma 
triglycerides  [68] . A beautiful study using glucocorticoid 
receptor–deficient mice pointed to a contribution of 
NTCP-governed bile acid dynamics to metabolism  [81] . 
These mice showed impaired hepatic bile acid uptake by 
the downregulation of NTCP, which reduces dietary fat 
absorption and increases BAT mitochondrial uncou-
pling. Reduced bile acid uptake via NTCP could also 
dampen hepatic FXR activation. The (metabolic) conse-
quences of this action are currently not clear, although 
some first insights were obtained using a mouse model, 
where human hepatocytes repopulated the liver of uroki-
nase plasminogen activator/severe combined immuno-
deficiency mice. NTCP inhibition using myrcludex B re-
sulted in increased CYP7A1 expression, suggesting re-
duced FXR activity  [82] . Chronic HBV infection in these 
humanized mice had a similar effect. Further studies are 
required to assess the (metabolic) consequences of NTCP 
inhibition, as effects on lipid, glucose or energy metabo-
lism were not investigated in this study.

  In summary, targeting bile acid uptake transporters, 
NTCP and ASBT, has exciting implications for the fields 
of virology, cholestasis and metabolism of glucose, lipid 
and energy, although therapeutic efficacy and long-term 
(side-)effects of altering the bile acid dynamics needs to 
be further elucidated.
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