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Abstract
Objective: Speech sound errors are common in people with 
a variety of communication disorders and can result in im-
paired message transmission to listeners. Valid and reliable 
metrics exist to quantify this problem, but they are rarely 
used in clinical settings due to the time-intensive nature of 
speech transcription by humans. Automated speech recog-
nition (ASR) technologies have advanced substantially in re-
cent years, enabling them to serve as realistic proxies for hu-
man listeners. This study aimed to determine how closely 
transcription scores from human listeners correspond to 
scores from an ASR system. Patients and Methods: Sentence 
recordings from 10 stroke survivors with aphasia and aprax-
ia of speech were transcribed orthographically by 3 listeners 
and a web-based ASR service. Adjusted transcription scores 
were calculated for all samples based on accuracy of tran-
scribed content words. Results: As expected, transcription 
scores were significantly higher for the humans than for ASR. 
However, intraclass correlations revealed excellent agree-
ment among the humans and ASR systems, and the system-
atically lower scores for computer speech recognition were 

effectively equalized simply by adding the regression inter-
cept. Conclusions: The results suggest the clinical feasibility 
of supplementing or substituting human transcriptions with 
computer-generated scores, though extension to other 
speech disorders requires further research.

© 2019 S. Karger AG, Basel

Introduction

Speech sound errors negatively impact the communi-
cation of people with a wide range of communication dis-
orders, sometimes precluding listeners from understand-
ing a speaker’s intended words. Speech intelligibility, the 
degree to which a person’s oral communication is under-
stood by a listener, is one of the primary measures that 
describe a person’s functional communication, described 
by Kent as the “sine qua non of spoken language” [1, p. 9]. 
It differs from other measures of speech production by 
summarizing the overall effectiveness of message trans-
mission rather than individual speech qualities. Abnor-
mal features of voice, resonance, and articulation may 

Initial results of this study were presented at the 2016 International 
Motor Speech conference in Newport Beach, CA, USA.
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have significant perceptual effects, yet may be minimally 
consequential to message transmission [2, 3]. For these 
reasons, speech intelligibility is frequently referenced as a 
measure of functional communication and used to justify 
treatment, establish baseline performance, and document 
treatment effects or disease progression.

In the area of speech disorders, much of the early intel-
ligibility research focused on dysarthria [4–7]. Despite di-
verse constellations of symptoms across affected motor 
systems and dysarthria types, imprecise articulation is al-
most always a prominent feature of dysarthria and wide-
ly recognized as a negative influence on listeners’ ability 
to understand the intended messages. Intelligibility mea-
sures therefore serve as an index of how speech impair-
ment in speakers with dysarthria impact their ability to 
communicate.

Until recently, much less was known about speech in-
telligibility in aphasia. Speakers with both fluent and non-
fluent aphasia profiles, with and without coexisting 
apraxia of speech, generate sound errors in their speech 
output. It is thought that some of these errors originate at 
a phonologic level of processing, others at a motor pro-
gramming level, and yet others through some combina-
tion of the two. Regardless of the underlying impairment, 
speech sound errors have salient consequences for speech 
intelligibility. Our group has demonstrated that single-
word intelligibility is useful for estimating severity and 
documenting change in individuals diagnosed with apha-
sia and apraxia of speech [8–10]. Furthermore, we have 
shown that monosyllabic single-word intelligibility can 
be completed by speakers with a wide range of impair-
ments, allowing for meaningful comparisons across par-
ticipants.

Options for Intelligibility Estimation
There are two general methods for quantifying intel-

ligibility: scaling and word transcription. Scaling re-
quires a listener to make an impressionistic judgment 
about intelligibility, often using verbal descriptions of 
severity (normal, mild, moderate, or severe) or numeric 
scales with equal-appearing intervals (e.g., 1–10). Im-
pressionistic percentage estimates, where a clinician lis-
tens to a sample and estimates the percentage of words 
correctly understood, is the most commonly used form 
of intelligibility scaling procedure [11]. Unfortunately, 
psychophysical research suggests that human listeners 
are not well equipped to rate intelligibility using so-
called equal-appearing interval scales and that impres-
sionistic estimates of intelligibility are unreliable [4, 5, 
12, 13].

Word selection or transcription methods are generally 
considered more valid and reliable for quantifying intel-
ligibility than scaling methods (see Schiavetti [12] for a 
review and critique of intelligibility scaling). Word tran-
scription procedures are derived experimentally through 
the following three steps: (1) a speaker produces speech 
stimuli (words or sentences, optimally of an unpredict-
able nature); (2) a listener transcribes the words perceived 
without knowledge of the stimuli; and (3) a comparison 
is made between the transcribed words and the intended 
target words, expressed as a percentage of words correct-
ly understood. The Assessment of Intelligibility of Dysar-
thric Speech (AIDS [14]) and its computerized version, 
the Speech Intelligibility Test (SIT [15]), are commonly 
used to evaluate intelligibility in dysarthria, as is the 
Frenchay Dysarthria Assessment (FDA-2 [16]). The 
AIDS has also been applied to evaluate speech intelligibil-
ity in aphasia, with good results [17, 18]. Additionally, 
our group developed a test that is sensitive to consonant 
and vowel errors in aphasia and apraxia of speech, and 
robust to speaker and listener familiarity effects: the Cha-
pel Hill Multilingual Intelligibility Test (CHMIT [19, 
20]). Although the CHMIT can be used in varied clinical 
populations, it is particularly suited to people with apha-
sia or others who have difficulty reading (e.g., people with 
visual impairment or limited literacy), as it provides an 
auditory-verbal cue for each stimulus in addition to a 
written prompt.

Clinical Use of Intelligibility Measures
There is broad agreement among speech-language cli-

nicians that speech intelligibility is a useful severity index 
[21], and that it should be a primary target for interven-
tion [11, 22]. However, most clinicians restrict their use 
to informal ratings or impressionistic estimates. In a sur-
vey of speech-language pathologists across practice areas 
(i.e., those who do and those who do not treat patients 
with dysarthria [23]), only 12% of the clinicians reported 
regular use of the two most common intelligibility assess-
ments (AIDS or FDA-2 [14, 16]). Among speech-lan-
guage pathologists who treat patients with dysarthria, 
formal intelligibility testing is more common, but still 
only 35% reported using a formal test [11] – again, either 
the AIDS or the FDA-2. Clinical use of word transcription 
testing for aphasia and apraxia of speech is unknown.

What Are the Barriers to Formal Intelligibility 
Testing?
There are several reasons clinicians use impressionis-

tic ratings in place of the more valid and reliable intelligi-
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bility metrics. First, they may lack access to an appropri-
ate measurement instrument, reportedly due to expense 
and insufficient financial resources [23]. Second, they 
may experience practical restrictions related to time and 
logistics, including making recordings and finding an un-
familiar person to complete transcriptions. Finally, they 
may perceive that informal ratings are equally useful and 
efficient [23].

Automated Speech Recognition instead of Perceptual 
Intelligibility Testing
Several of the challenges to completing intelligibility 

transcriptions – familiarity with the speaker, familiarity 
with the conversational topic, and limited time – might 
be addressed using automated speech recognition 
(ASR) technologies, with the added benefit of obtaining 
scores instantly. ASR is generally defined as computer-
based systems that convert spoken language into text, 
and it has undergone several waves of innovation in 
nearly a century of development. Early ASR systems 
were speaker dependent, developed to detect digits spo-
ken by specific, individual speakers [24], requiring 
speaker-specific training to achieve accurate word rec-
ognition.

More recent developments in computing power and 
processing strategies have allowed for speaker-indepen-
dent ASR, such as voice input applications on personal 
computers, smartphones, and other personal computing 
devices. These are designed to be used by any speaker 
without the need for speaker-specific training, allowing 
for different voices and speech patterns within a language 
population. As of this writing, speech recognition engines 
on phones and in web-based applications (e.g., IBM Wat-
son, Google Speech-to-Text) operate essentially in real 
time, relying on the computational power of server-based 
processing systems.

ASR as a Predictor of Intelligibility Scores for Speakers 
with Disorders
Several researchers have found that ASR systems are 

less accurate at identifying words produced by people 
with dysarthria compared to people with typical speech 
production, reducing their usefulness as accessibility 
tools [25–30]. Notwithstanding its poorer accuracy, re-
cent research has shown that ASR may be useful for clin-
ical purposes. Ballard et al. [31], for example, have shown 
that ASR can be effective in providing speakers with 
apraxia of speech and aphasia feedback on their speech 
productions. In particular, the authors found that items 
recognized by ASR corresponded to human decisions on 

correct/incorrect trials 75% of the time. Anecdotally, we 
are also aware of clinicians using web-based ASR systems 
as real-time feedback tools to encourage speakers to slow 
their rate and overarticulate.

In addition to the emerging use of ASR as a treatment 
feedback tool, others have observed that the systems 
could be used to estimate or predict speech intelligibility, 
noting relationships between speech intelligibility rated 
by human listeners and words transcribed with ASR [26, 
32–34]. Ferrier et al. [32] compared computer recogni-
tion and human intelligibility scores for 10 speakers with 
dysarthria due to cerebral palsy. After 5 training sessions, 
word recognition scores were strongly correlated with 
intelligibility of words and sentences from the AIDS (r’s 
0.86–0.92). Similarly, Thomas-Stonell et al. [26] found 
that word recognition of speakers with dysarthria by a 
trained ASR system was significantly correlated with in-
telligibility scores from 10 listeners (r = 0.80).

More recent studies have reported weaker relation-
ships between human impressionistic intelligibility es-
timates and results from untrained, speaker-indepen-
dent ASR systems. For example, Rosdi et al. [35] used 
a custom system to predict human intelligibility per-
centage estimates of Malay children with speech im-
pairment, reporting a moderate but significant correla-
tion between the measures (r = 0.57). Computer recog-
nition was lower than human intelligibility ratings 
across severity levels (approx. half as accurate as hu-
mans). However, visual inspection of the data indicates 
that intelligibility for the human listeners was often at 
or near ceiling, which created a nonlinear relationship 
and suggests that the relationship between human and 
computer measures was stronger than reported. This 
ceiling effect may be owed in part to the use of impres-
sionistic percentage estimates by the human listeners, 
which, as noted before, are ill-suited to human percep-
tual abilities.

The purpose of this study was to evaluate the potential 
of a commercial speech recognition engine for quantify-
ing word production by stroke survivors with aphasia 
and/or apraxia of speech. The study is organized around 
three questions:
1.	 Is there a significant difference in transcription scores 

between 3 human listeners and a commercial speech-
to-text engine?

2.	 What is the agreement and reliability among tran-
scribers’ scores?

3.	 Can human transcription scores be reliably predicted 
from computer-generated scores, and what is the rela-
tionship between them?
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Method

Speech materials for this study were sentences produced by 10 
adults whose speech output was characterized by varying fre-
quencies of speech sound errors due to aphasia with and without 
apraxia of speech. The recordings were collected as part of a re-
lated study testing the effects of different auditory feedback con-
ditions (e.g., normal auditory feedback, masked auditory feed-
back) on measures of speech fluency [36]. Orthographic tran-
scriptions also were completed to evaluate effects on speech 
production. As such, these transcriptions are used as a conve-
nience sample. The speakers’ characteristics are presented in Ta-
ble 1; for convenience of data presentation, the participants are 
numbered in order of descending performance on the adjusted 
transcription scores, the primary dependent variable of this 
study.

The participants included 6 females and 4 males, with ages 
ranging from 27; 8 to 73; 4 years;months (median age 56 years). 
Nine had survived a left hemisphere stroke; 1 had a traumatic 
brain injury. All experienced some degree of language impair-
ment, although 2 tested in the normal range of the Western 
Aphasia Battery, Revised (WAB-R [37]; median Aphasia Quo-
tient = 79; range 30–98). Clinical assessment of speech impair-
ment was completed by authors A.J. and K.L.H. using methods 
published elsewhere [10], with 1 participant classified as having 
minimal speech impairment, 4 participants as having aphasia 
with phonemic paraphasia, and 5 participants as having apraxia 
of speech.

Speaking Conditions
The participants produced sentences in a single-session treat-

ment introduction and withdrawal paradigm, with a different au-
ditory feedback condition for each phase. An ABA design was 
used, where auditory feedback was unobstructed for 20 sentences 
produced in the A phase, and masked auditory feedback (e.g., 85 
dB pink noise) was presented for 20 sentences in the B phase and 
20 sentences in a second A phase. Sentence stimuli were drawn 
from the Harvard sentences lists [38], with different sets of 20 sen-
tences for each phase, resulting in speakers producing 60 different 

sentences in the recording session. To partially address listener 
familiarity with the sentences produced by multiple speakers, 4 
different sentence sets were created; speakers were randomly as-
signed to one of the stimulus sets.

Stimulus presentation and recording were controlled using Al-
vin2 software [39] on a PC running 64-bit Windows 7. Audio was 
recorded with a headset microphone (C555L; AKG Acoustics 
GmbH, Vienna, Austria) and masking noise was delivered through 
foam-tipped earphones (ER-3A; Etymotic Research, Inc., Elk 
Grove Village, IL, USA) via an external USB soundcard (M-Audio 
Fast Track Ultra; Avid Technologies, Inc., Burlington, MA, USA). 
During the masking phase, pink noise was delivered binaurally at 
85 dB SPL, calibrated using a Larson-Davis System 824 sound lev-
el meter (Depew, NY, USA) with a 2cc coupler (GRAS RA0038, 
Holte, Denmark). For each sentence trial, speakers were provided 
with an auditory example and allowed to view the written sentence 
while speaking.

Transcriptions
The listeners were 3 graduate students of speech-language pa-

thology (pseudonyms: Daria, Elvia, and Fiona). They completed 
the tasks in fulfillment of a research experience requirement. 
Their instructions were to listen to each sentence, type the words 
they heard, and type “x” for each unintelligible syllable. Because 
sentences were repeated across some participants, there was po-
tential for listeners to learn the sentences. To reduce familiarity 
effects, when a speaker clearly produced an error (e.g., word or 
sound substitution), the listeners were instructed to type it as 
they heard it, even if they knew it was incorrect and thought they 
knew what word was intended. Each listener transcribed 600 
sentences, randomized across speakers and conditions in Alvin2 
[39].

In addition to the human transcriptions, computer transcrip-
tions were generated using the IBM® Watson Speech to Text ser-
vice [40] implemented with the Bluemix/IBM Cloud program-
ming platform [41]. Transcriptions were obtained from the system 
at 2 points in time, July 2015 (Watson 2015) and June 2018 (Wat-
son 2018), to permit an evaluation of performance improvement 
over time. Parameters passed to the service for recognition includ-

Table 1. Participant information

Participant Age, 
years; months

Sex Time after onset, 
years;months

Western Aphasia Battery Speech 
diagnosisaphasia quotient type

P01 47;5 M 0;5 98 Anomic MIN
P02 52;8 F 1;3 96 Anomic APP
P03 64;1 M 0;2 86 Anomic APP
P04 51;9 F 7;6 88 Anomic APP
P05 59;5 F 1;2 69 Broca’s APP
P06 27;8 F 1;6 82 Anomic AOS
P07 50;1 M 4;10 70 Conduction AOS
P08 66;8 F 0;6 60 Broca’s AOS
P09 66;6 F 2;3 76 Broca’s AOS
P10 73;4 M 4;9 30 Broca’s AOS

MIN, minimal speech impairment; APP, aphasia with phonemic paraphasia; AOS, apraxia of speech.
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ed: (1) US English broadband model (default; base model in use at 
each time point); (2) continuous speech stream (i.e., don’t stop at 
pauses); and (3) opt-out of request logging, preventing the system 
from saving audio files for service improvement. Output param-
eters included the word with the highest match likelihood, time 
stamps for each word, and confidence rates for a maximum of 5 
alternative words.

Measures
For both human and computer transcriptions, the dependent 

measure was an adjusted transcription score, based on exact 
match for 5 keywords in each sentence plus an adjustment based 
on close similarity between transcription and target words. The 
rationale for using an adjusted score was to allow for a more 
fine-grained metric than possible with the raw score of 5 key-
words (e.g., 1/5 = 20%, 2/5 = 40%, etc.). In addition, use of an 
adjusted score also reduces differences between human and 
computer listeners due to minor differences, such as suffixes 
(e.g., “liked” vs. “likes”). The score adjustment was computed 
algorithmically using the Levenshtein edit distance from the 
Natural Language Toolkit [42]. This procedure is commonly 
used to account for small differences in text strings (e.g., suf-
fixes, as noted above). For example, for the target sentence “The 
birch canoe slid on the smooth planks,” if the listener tran-
scribed “The Bart came stead on the smooth plants,” they would 
receive full credit for “smooth” and partial credit for “plants,” 
which differed by only 1 character from “planks.” The edit dis-
tance between “plants” and “planks” is 1 (i.e., 1 letter must be 
altered to change the word “plants” to “planks”). The adjusted 
score for that word is then computed as the proportional differ-
ence between the letter strings (e.g., [12 (sum of characters in 
the 2 text strings) – 1 (edit distance)]/12 [sum of characters in 
the 2 text strings]).

The mean of the adjusted transcription scores was obtained for 
each of 3 speaking conditions and used for each analysis.

Analysis
To answer the first question on the difference in transcription 

scores between human and computer transcribers, we used a 
mixed-effects model in JMP software [43], with transcribers and 
speakers as fixed effects, and speaking condition (e.g., normal feed-
back and masked auditory feedback) as a nested effect within 
speakers.

The second question, on the agreement and reliability among 
transcribers, employed intraclass correlations (ICCs) between 
each pair of listeners to assess agreement, and Spearman correla-
tions for reliability. We selected the type 3 ICC analysis (two-way 
mixed), treating speakers as random effects and transcribers as 
fixed effects, and used the values of absolute agreement for single 
raters. ICCs and Spearman correlations were computed in R using 
the “psych” package [44, 45].

The third question, on the prediction of human transcription 
scores from computer-generated scores, was addressed using lin-
ear regression, with the mean of human scores as the dependent 
variable and computer-generated scores as the independent pre-
dictor. Sequential regression models were first run to compare the 
performance of Watson 2015 and 2018 in predicting human per-
formance, using the extra-sum-of-squares principle and the R2 
change metric to evaluate significant differences between models. 
A simple linear regression was run with the single best predictor 

as an independent factor to generate the slope and intercept need-
ed to predict human scores from computer results. These analyses 
were completed in JMP [43].

Results

The overarching goal of this study was to evaluate the 
potential usefulness of commercial ASR for quantifying 
speech production in clinical populations, in this case a 
convenience sample of stroke survivors with speech 
sound impairment consistent with aphasia and/or aprax-
ia of speech. In the following pages, we begin by deter-
mining whether human listeners differ from each other 
in their transcriptions, and whether they differ from 
scores obtained by the IBM Watson system. Second, we 
address the reliability and agreement among the listeners 
and systems. Finally, we examine whether there is a pre-
dictable relationship between human-generated and 
computer-generated transcription scores.

Effect of Transcriber on Scores
Transcription scores varied widely across speakers, as 

shown in Figure 1, with mean adjusted scores ranging from 
10% (P10) to 93% (P01). Transcribers also varied in their 
scores, with the human listeners recognizing more target 
words than the computer, in the following order from most 
to least accurate: Daria, Elvia, Fiona, Watson 2018, and 
Watson 2015. The mixed-effects model confirmed the sig-
nificance of each of these factors (F(9, 116) = 937.40, p < 
0.0001 for speaker; F(4, 116) = 52.85, p < 0.0001 for tran-
scriber) as well as the condition1 (masking vs. no masking; 
F(20, 116) = 5.51, p < 0.0001). Pairwise comparisons using 
Tukey’s honestly significant difference showed significant 
differences between almost all transcriber pairs and most 
speakers. All transcriber pairs differed, except the scores 
from Watson in 2018 compared to 2015. Speakers P01, 
P02, and P03 were similar in their transcription scores, 
with no significant differences according to Tukey’s hon-
estly significant difference. P03’s scores were also similar 
to those of P04; all other differences were significant.

1 The observed main effect of “condition,” although not important to the study 
purpose, deserves mention. The results of the original study [36] indicated 
that several speakers spoke faster with masking noise. This was a positive 
outcome, considering their baseline speech rate was very slow, but transcrip-
tion scores were obtained to determine whether articulation was negatively 
impacted. Planned comparisons between the conditions indicated no statisti-
cally significant difference for 4 of the 10 speakers and significantly decreased 
transcription scores during masking for 3. Because speech samples from all 
recording sessions were included for all participants in the present study, ef-
fects of “condition” have no bearing on our analysis of transcriber effects.
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Agreement and Reliability
The metrics of agreement and reliability indicated a 

high correspondence among the transcribers. In particu-
lar, ICCs ranged from 0.98 to 0.99 among human listeners 
and for human-to-Watson 2018 comparisons (Table 2; 
excellent agreement [46]). ICCs between humans and 
Watson 2015 ranged from 0.96 to 0.98. Similarly, Spear-
man correlations were very high, from 0.96 to 0.98 among 
human listeners, though slightly lower (0.95–0.96) for 
human-to-computer comparisons (Table 3). Notably, re-
liability and agreement were poorer for the IBM system 
used in 2015.

Prediction of Human Scores from  
Computer-Generated Scores
Finally we come to the question of whether computer-

generated transcription scores can predict human listen-

er scores. For this question, we shifted from individual 
human listener scores to the mean of the 3 listeners, 
which is considered sound clinical practice to account 
for listener variability [47]. We completed a sequential 
regression analysis, with the mean of the human listener 
scores as a dependent factor, and with Watson’s adjusted 
scores from 2015 and 2018 entered sequentially as inde-
pendent predictors. The first model was highly signifi-
cant, with Watson’s 2015 scores accounting for 95% of 
the variance in human scores (F(1, 27) = 1,390.01, p < 
0.0001, R2 = 0.952). Adding Watson’s 2018 scores to the 
model significantly improved the model, increasing the 
variance accounted for to 98% (ΔF(1, 27) = 43.29, p < 
0.0001, ΔR2 = 0.029). A further sequential analysis was 
completed to confirm that Watson’s 2018 results alone 
are sufficient to predict human scores, entering the 2018 
scores first, followed by the 2015 scores. The model with 

Listener
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Watson
(2015)
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Fig. 1. Intelligibility scores by listener and 
speaker. The percentage of words correctly 
identified is plotted for each speaker, 
shown in markers with distinct shapes and 
colors, with separate measures shown for 3 
human listeners and the computer tran-
scription of Watson from 2015 and 2018. 
The results for each speaker include 3 sepa-
rate values, the mean intelligibility for each 
of 3 conditions (normal auditory feedback, 
masked auditory feedback, and normal au-
ditory feedback).

Table 2. Pairwise intraclass correlations (agreement)

Elvia Fiona IBM18 IBM15

Daria 0.99 0.98 0.98 0.96
Elvia 0.99 0.99 0.97
Fiona 0.99 0.98
IBM18 0.99

Table 3. Pairwise Spearman correlations (reliability)

Elvia Fiona IBM18 IBM15

Daria 0.96 0.97 0.95 0.93
Elvia 0.98 0.96 0.95
Fiona 0.96 0.95
IBM18 0.98
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2018 scores alone accounted for 98% of the human score 
variance (F(1, 27) = 1,432.50, p < 0.0001, R2 = 0.98); add-
ing the 2015 scores did not significantly improve the 
model fit (ΔF(1, 27) = 1.69, p = 0.20, ΔR2 = 0.001).

Based on these analyses, we conclude that Watson’s 
2018 transcription scores predicted human listener scores 
with high accuracy (Fig. 2). As noted previously, however, 
each of the 3 human listeners identified words more ac-
curately than Watson. If we were to use Watson’s scores 
as a proxy for human listeners, an adjustment would be 
needed. This can be accomplished using the coefficients 
from the linear regression analysis with Watson 2018 as 
the sole predictor (B0 = 0.068, B1 = 1.003). In essence, for 
this sample, the mean of human transcription scores can 
be predicted by taking Watson’s 2018 score and adding 
0.068 (6.8%). Notably, if using Watson’s 2015 scores, the 
correction would be 0.09 (9%).

Discussion

The findings from this study are promising for the use 
of free or very-low-cost ASR in the clinical assessment of 
speech production. The web-based IBM Watson Speech 
to Text Engine transcribed words in sentences produced 
by stroke and brain injury survivors with speech sound 
errors with accuracy nearing that of human listeners. Al-
though the computer-based transcription scores were 

significantly lower than those of each of the human listen-
ers, agreement and reliability between the listeners and 
the computer were nevertheless very strong. Further-
more, computer-generated scores very closely predicted 
the mean of the 3 human listeners’ scores, suggesting a 
potential for clinical use in the future, though significant 
research is needed, particularly in broader clinical popu-
lations (e.g., speakers with dysarthria).

ASR Performance May Differ across Speaker 
Diagnoses
The accuracy of ASR may vary across different speak-

er populations, including those with different speech 
and language diagnoses. Early use of ASR software in 
people with dysarthria generally showed much lower 
accuracy than human listeners. For example, even after 
5 training sessions, Doyle et al. [33] found that human 
listeners perceived 30% more words produced by speak-
ers with dysarthria compared to an ASR system. In con-
trast, the present results for speakers with aphasia and 
apraxia of speech show that a current web-based ASR 
engine performed well relative to human listeners, rec-
ognizing approximately 7% fewer words than human 
listeners.

One possibility for the improved performance in this 
study relative to earlier work is that our participants did 
not have clinically significant dysarthria as was the case 
in prior studies of ASR in speech disorders. It is possible 
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Fig.  2. Prediction of human intelligibility 
scores from automated results. The mean 
of the intelligibility scores from 3 human 
listeners is plotted against the scores from 
IBM Watson as obtained in 2018. Each 
speaker is represented in markers of dis-
tinct color. A line with a slope of 1 is shown 
in black, demonstrating that human listen-
ers perceived words more accurately than 
the computer for each speaker.

D
ow

nloaded from
 http://w

w
w

.karger.com
/fpl/article-pdf/71/5-6/286/2804727/000499156.pdf by guest on 20 April 2024



Automated Speech Recognition in Stroke 
Survivors

293Folia Phoniatr Logop 2019;71:286–296
DOI: 10.1159/000499156

that current ASR significantly underperforms in identify-
ing words of speakers with dysarthria because more 
speech subsystems may be impacted than in speakers 
with aphasia or apraxia of speech. In particular, speakers 
with dysarthria often have impairments involving phona-
tion and nasal resonance, which weaken the signal-to-
noise ratio and may potentially lessen the accuracy of 
ASR. While recent research has shown that Google’s 
Speech-to-Text engine makes more errors with speakers 
with Parkinson’s disease than with controls [30], there 
was no comparison to human listener performance with 
these speakers.

Ongoing ASR Development
Major advances in ASR technology in the past decade 

are the most likely explanation for the differences be-
tween our results and those of early ASR studies on speak-
ers with dysarthria. Most of the research on speech rec-
ognition in speakers with dysarthria was completed in the 
1990s, with software developed in the early 1990s. Al-
though the exact details of the methodology used by 
IBM’s current speech recognition engine are not avail-
able, major developments in the use of deep neural net-
works for ASR in the past decade [48] have resulted in 
great improvements, in comparison to Gaussian mixture 
models/Hidden Markov models used in the prior de-
cades.

Commercially available ASR applications have great 
potential for clinical use, including estimation of intelli-
gibility and tracking change over time for clinical docu-
mentation and self-monitoring by clients while practic-
ing with strategies. The web-based technology used in 
this study is convenient and easily accessible, unlike cus-
tom research-based systems used for advanced develop-
ment of ASR processing strategies. Demonstration ver-
sions are available via web browser for the IBM and 
Google services, and they allow users to obtain transcrip-
tions for live recordings or uploaded audio files.2 The ser-
vices are generally free for small amounts of audio (e.g., 
currently up to 60 min of audio per month is free). Alter-
natively, clients who own smartphones may also use the 
voice recognition on their personal device to monitor 
their speech production during treatment sessions or in-
home practice. One important caveat regarding the web-
based services is that they are not intended to process – or 
to protect – personal data; thus, caution is needed to en-
sure personal information is not disclosed when using 

this application. Note that for technical users using the 
application programming interface, IBM provides an op-
tion so that recordings are not saved in the system.

There are disadvantages to relying on commercial sys-
tems from a researcher’s and a clinician’s perspective, re-
lated to lack of control over the processing system and its 
change over time. IBM and its competitors are no doubt 
constantly working to improve the performance of this 
product, and thus results obtained today will likely differ 
from those obtained 3 years from now. In fact, that is ex-
actly what we discovered when we compared computer-
generated results across time: Watson had significantly 
improved its transcription of our participants’ sentences 
from 2015 to 2018, resulting in a more robust prediction 
of human listener results. While this is a very positive out-
come from the perspective of the end user with speech 
impairment, it also means that the formula we generate 
to predict transcription scores will change over time and 
will need to be updated to be useful as a clinical tool.

To date, even the most advanced ASR applications are 
less accurate than human listeners. Current ASR technol-
ogy is able to account for sentence context when decoding 
specific words, but human listeners likely still benefit 
from more general context (e.g., topic, etc.). We assume 
that humans will not continue to outperform computers 
indefinitely – there may come a time when ASR super-
sedes human listeners in accurately transcribing the in-
tended words of people with speech impairments. If so, 
an open question is whether human transcription scores 
will still be predictable from the superior computer-based 
scores.

Clinical Applications
In our view, the expected change in ASR accuracy is 

welcome, but it must be considered with caution when 
used for clinical purposes, and safeguards should be used 
to prevent effects of commercial ASR development from 
influencing derived transcription scores. For example, if 
ASR is used to predict human transcription scores, then 
comparisons between recordings made at different time 
points should be processed at the same time, allowing a 
direct comparison of results. If a formula is to be used to 
predict human listener performance based on a statistical 
analysis of computer versus human scores, such as de-
scribed in this paper, then the analysis must be rerun pe-
riodically to update the correction factor needed. It is pos-
sible for users to specify the language model IBM’s speech 
recognition machine uses to identify words, allowing cli-
nicians in the future to use an ASR version that has previ-
ously been validated against human transcription scores. 

2 https://www.ibm.com/watson/services/speech-to-text/; https://cloud.
google.com/speech-to-text/.
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However, this detail might easily be overlooked by users 
without programming experience, resulting in inconsis-
tent use of this technology.

Limitations and Future Directions
As previously noted, the prior work is limited in its fo-

cus on speakers with speech sound errors with aphasia or 
apraxia of speech due to stroke or brain injury; future 
work is needed to determine whether commercially avail-
able ASR is as successful in predicting transcription scores 
of speakers with speech sound errors due to dysarthria. In 
addition, although the listeners were highly reliable 
among each other, the use of only 3 listeners to transcribe 
speech from 10 speakers – some of whom produced the 
same sentences – is a potential limitation of the study. 
Some studies using direct magnitude estimation to rate 
intelligibility have used 10 or more listeners [49–51]. 
However, in previous research using bootstrap sampling 
of various listener sample sizes, we have observed good 
reliability for only 3 listeners [52]. Furthermore, this 
number of listeners approximates a feasible clinical sce-
nario. In fact, when transcription-based intelligibility is 
done in practice, it is likely more common to have only 
one clinician transcribe recordings of a peer clinician’s 
patients, although this practice is risky and does not per-
mit analysis of inter-listener variance.

The limited number of listeners also caused us to use 
a sentence transcription task differing from standard in-
telligibility tasks. Whereas standard intelligibility para-
digms have listeners type the words they think the speak-
er is trying to produce, even if they are not produced cor-
rectly, we had listeners type the words as they heard them, 
even if they knew what the target word was, in order to 
counteract familiarity with the sentences. Future work 
would benefit from using more listeners with more stan-
dard intelligibility instructions.

In addition to the limited number of listeners, we note 
that speech-language pathology students are not repre-
sentative of the general listening population. As with the 
number of listeners, this choice was meant to approxi-
mate a likely clinical scenario. Nevertheless, these stu-
dents have training in phonetic variability and greater fa-
miliarity with impaired speech than the general popula-
tion; thus, their transcription scores are likely higher than 
those of typical untrained listeners. Furthermore, gradu-
ate students are often highly motivated and exert more 
effort in the listening task than the general listener, which 
may impact intelligibility scores.

The present study examined only transcription of hu-
mans and IBM’s speech recognition engine, with results 

adjusted for small variations using the commonly used edit 
distance algorithm. We did not address the types of errors 
produced by human or computer transcribers. Future 
analysis of transcription errors in this and other speaker 
populations may be instructive both for the development 
of ASR technologies and for guiding speakers and clini-
cians to productive strategies for improving intelligibility.

Conclusions

Several decades of advancement in ASR technology 
have resulted in free and accessible web-based speech rec-
ognition tools that approach the performance of human 
listeners. The present study indicates that ASR may be 
useful for predicting human transcription scores for 
stroke and traumatic brain injury survivors with speech 
sound impairment. Further research is needed to deter-
mine if similar relationships exist between computer and 
human transcription of dysarthric speech. Clinician-re-
searcher partnerships are needed to determine how ASR 
might be integrated most effectively into clinical practice. 
However, given the current state of clinical intelligibility 
documentation for adults, there is significant potential 
for using ASR to strengthen prognostication and out-
come evaluation for people with neurological communi-
cation disorders.
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