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sian biologist, Dmitri Ivanovsky, and the Dutch botanist, 
Martinus Willem Beijerinckwent, who first isolated a to-
bacco-infecting microbe that caused tobacco mosaic dis-
ease. Ivanovsky demonstrated that crushed, infected to-
bacco leaf extracts remained infectious even after Cham-
berland filtration, which normally retains bacteria. He 
suggested that the infection might be caused by a bacte-
rial toxin. However, Beijerinck went one step further, 
concluding that this new pathogen required living plants 
to replicate and multiply  [1] . Subsequent studies showed 
that viruses infect all domains of life, including bacteria, 
archaea and eukaryotes, and are found in all ecological 
niches  [2] . This pleiotropic distribution on our planet al-
lows viruses to play the role of ‘natural motors’ that drive 
global energy and nutrient cycling  [3, 4] . Until very re-
cently, human viruses were considered only pathogens 
that were capable of causing human pandemics and a 
wide range of diseases that in some cases lead to a fatal 
outcome. With the development of new sequencing tech-
nologies (see the following section), which have allowed 
the analysis of the global viral population (DNA and 
RNA) in humans, known as the human virome, com-
pletely new human-associated viruses have emerged  [5, 
6] . However, the majority of these high-throughput se-
quencing techniques were performed with the use of fil-
ters with pore sizes in the range of 0.2–0.45 μm, which 
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 Abstract 

 Viruses are the most abundant obligate intracellular entities 
in our body. Until recently, they were only considered to be 
pathogens that caused a broad array of pathologies, ranging 
from mild disease to deaths in the most severe cases. How-
ever, recent advances in unbiased mass sequencing tech-
niques as well as increasing epidemiological evidence have 
indicated that the human body is home to diverse viral spe-
cies under non-pathological conditions. Despite these stud-
ies, the description of the presumably healthy viral flora, i.e.  
 the normal human virome, is still in its infancy regarding viral 
composition and dynamics. This review summarizes our cur-
rent knowledge of the human virome under non-patholog-
ical conditions.  © 2013 S. Karger AG, Basel 

 Humans and Viruses: An ‘I Love You… Me Neither’ 

Story 

 Since their discovery more than 100 years ago, viruses 
have been commonly described as obligate intracellular 
pathogens. Historically, the first studied virus was the one 
causing rabies, by Louis Pasteur. However, it was the Rus-
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filter larger viruses (see the section entitled ‘The human 
megavirome’), resulting in a technical bias of the human 
virome. In this context, it became rapidly clear that viral 
richness and diversity in the human body under non-
pathological conditions were widely underestimated. As 
an example, a rough estimation based on bacteria-infect-
ing viruses (bacteriophages) indicates that there are 100 
times more viruses than eukaryotic cells in our body  [2, 
7] . Human-associated viruses control the microbial di-
versity of the human gut and skin  [8, 9] . Viruses affect the 
very foundation of our nature, our genome. Reminis-
cences of ancestral human-viral cohabitation are im-
printed in our genome with approximately 100,000 
known endogenous viral fragments, representing ap-
proximately 8% of our genome  [10] . Finally, endogenous 
viral proteins have been associated with important phys-
iological functions, such as mammal placental morpho-
genesis  [11, 12] . 

  In the present review, we briefly present the evolution 
of the virological techniques employed in the discovery
of human-associated viruses. We then explore existing 
knowledge of the viral diversity found in human physio-
logical systems under non-pathological conditions. Fi-
nally, we discuss the consequences of this human-virus 
cohabitation. 

  ‘Tracking the Small Guys’: Tools for Viral Detection 

in Humans 

 Describing the human viral flora requires the right 
molecular and cellular tools. Historically, classical virol-
ogy techniques were based on viral isolation from cells 
and the subsequent observation of cytopathic effects on 
cell lines or the intracerebral inoculation of suckling mice. 
Immunological methods, such as seroneutralization or 
hemagglutination, were then used to detect viral antigens. 
These techniques were largely used for the isolation of 
new pathogenic viruses that could be cultivated  [13] . 
With progress in the field of molecular biology, PCR-
based methods became the main techniques for viral de-
tection from diverse environmental and clinical samples 
 [14] . However, the identification of new or highly diver-
gent viruses that could not be cultivated remained chal-
lenging. The development of next-generation sequencing 
techniques made it possible to sequence all viral genomes 
in a given sample without previous assumptions about 
their nature. These techniques, known as viral metage-
nomics, allowed the discovery of completely new viral 
species. Currently, the majority of viral metagenomics 

studies have been performed with DNA viruses  [15–17] . 
To our knowledge, the overrepresentation of metage-
nomic studies performed on DNA viruses compared with 
RNA viruses is mainly due to technical limitations  [18] . 
In the near future, advances in methodology will certain-
ly enable routine implementation of RNA viral metage-
nomics studies in humans. 

  Exploring the Viral Flora in Humans  

 Digestive Tract 
 The most extensively studied part of the human body 

with respect to normal viral communities is the human 
gastrointestinal tract. The study of this system provides 
several practical advantages; it represents a non-invasive 
and easy sampling site as well as provides a sufficient 
amount of material, thereby allowing for the analysis of 
the viral composition and dynamics in the gut during a 
normal life. The first large-scale survey of the human gut 
virome was performed by Rohwer and colleagues  [17]  
10 years ago. Using partial shotgun sequencing on viral 
isolates obtained from healthy feces, they detected the 
presence of bacteriophages that were mainly related to 
the Siphoviridae family with an estimated 1,200 geno-
types. Interestingly, the majority of detected sequences 
were unclassified, suggesting that the human gut virome 
was far more complex than expected. The same group 
undertook a more detailed study of the composition of 
DNA viruses from the feces of a healthy 1-week-old in-
fant  [19] . The results revealed a viral community with 
extremely low diversity, with an estimated 8 viral ge-
nomes corresponding to Podo-, Sipho- and Myo-virus 
DNA phages. Interestingly, the overall viral community 
in the human gut proved to be highly dynamic, changing 
dramatically between 1 and 2 weeks of age. A more de-
tailed analysis of the infant gut was undertaken by Gor-
don et al.  [16] , who performed a comparative study of 
the viruses present in the fecal microbiota of monozy-
gotic twins and their mothers. Interestingly, they found 
a high prevalence (>75%) of eukaryotic viral genomes in 
the gut virome, consisting of sequences related to Her-
pesviridae, Tymoviridae, Reoviridae and Poxviridae. 
The majority of bacteriophages and prophages were 
double-stranded DNA (dsDNA) phages and mostly 
members of the order Caudovirales. Notably, interindi-
vidual viral composition was highly divergent between 
monozygotic twins, whereas the intraindividual viral 
flora varied little over a year. All studies agreed that 
phage communities in the human gut played a critical 
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role in the control of the bacterial population. However, 
deciphering the phage-bacteria-human interactome has 
only recently begun to emerge. For instance, the viral 
metagenomics analysis of the oral cavity of healthy indi-
viduals performed by Willner et al.  [20]  showed that 
phages represent an important reservoir for bacterial 
virulence genes; thus, phages play a dual role in which 
they control the bacterial population but also contribute 
to bacterial pathogenicity and resistance via horizontal 
gene transfer.

  A continually increasing number of eukaryotic single-
stranded DNA (ssDNA) viruses in healthy human stool 
samples has also been identified through high-through-
put sequencing or by PCR-based methods  [21] . Interest-
ing examples of ssDNA viruses are those from the Circo-
viridae family. For example, Li et al.  [22]  found new cy-
cloviruses and circoviruses in human stool samples from 
Pakistan, Nigeria, Tunisia, and the USA. Another gyrovi-
rus, the Chicken anemia virus, which is an important avi-
an pathogen, was found with a high prevalence (25%) in 
the feces of Chilean children, suggesting a possible cross-
species transmission from farm animals to humans  [22–
24] .

  Persistent viral shedding of dsDNA viruses of the 
Polyomaviridae family from the gastrointestinal tract has 
been reported in several studies. PCR-based detection of 
the BK, JC and SV40 viruses were identified in healthy 
children and adults. Viral detection was more frequent in 
stool samples from children compared with adults. These 
findings support the hypothesis that the gastrointestinal 
tract may be a site of Polyomavirus persistence with a pos-
sible fecal-oral route of viral transmission  [25] . 

  Multiple RNA viruses, generally considered as human 
pathogens, have also been detected in the normal gut viral 
flora. PCR-based or metagenomic analyses on ‘healthy’ 
human feces revealed the presence of several eukaryotic 
viral families, such as Astroviridae  [26, 27] , Caliciviridae 
 [28, 29] , Picornaviridae, Reoviridae and Picobirnaviri-
dae, as well as plant viral families, such as Virgaviridae. 
Picornaviridae is the largest (+) ssRNA viral family with 
more than 12 recognized genera. Viruses belonging to 
this family have relatively strict host specificity but can 
infect a wide range of animals, including humans. Cellu-
lar tropism ranges from the gut to the central nervous and 
respiratory systems. In the gut viral flora,  Enterovirus  
(Poliovirus, Echovirus, Coxsackievirus),  Kobuvirus  
(Aichi virus),  Parechovirus  and  Cardiovirus  (Saffold vi-
rus)  [30]  have mainly been found, even in a non-patho-
logical context as demonstrated by Kapusinszky  [31] . 
Human Enterovirus type C has also been identified 

among healthy children  [32, 33] . Human Cosavirus (for 
the common stool-associated Picornavirus) and human 
Salivirus (for the stool Aichi-like virus), which are not yet 
recognized as new species, have been reported in several 
studies in stool samples from healthy children  [5, 34–38] ; 
however, an understanding of their pathogenicity is lack-
ing because they can also be present in cases of gastroen-
teritis.

  Reoviridae and Picobirnaviridae are two dsRNA virus 
families responsible for gastroenteritis, but both may be 
present in apparently healthy humans. For example, ro-
taviruses (Reoviridae,  Rotavirus  genus) are a major cause 
of mortality in children under the age of 5 in developing 
countries, but some genotypes, such as G10P strains, have 
frequently been associated with asymptomatic neonatal 
infections in India  [39] . The authors reported no signifi-
cant differences in the sequences obtained from strains 
infecting symptomatic and asymptomatic neonates, sug-
gesting that host-specific or environmental factors may 
contribute to the pathogenicity of a virus in a given popu-
lation. Similar findings concerning Picobirnaviridae were 
reviewed by Ganesh  [40]  in 2012. These interesting find-
ings suggest that frequent enteric infections with diverse 
enteric viruses occur during early childhood and less fre-
quently in adults without clinical symptoms, indicating a 
change in the virome based on the age and environment 
of individuals. 

  Zhang et al.  [41]  performed the first metagenomic 
study on the RNA viral community in human feces. They 
found that the fecal flora was mainly composed of plant-
infecting RNA viruses, specifically Pepper mild mottle vi-
rus and Tobacco mosaic virus. Plant viruses are generally 
considered incapable of infecting humans. However, a 
few studies have reported the presence of plant viral RNA 
in the human body, including the respiratory system via 
cigarette use  [42]  and the gut via contaminated food con-
sumption  [43] . Colson et al.  [43]  noted a higher preva-
lence of Pepper mild mottle virus in the stools of adults 
but not children, possibly due to a difference in their diet. 
In fact, the presence of plant viruses in humans may not 
represent an infection of the human body but may be due 
instead to a passive mechanism, such as the ingestion of 
contaminated food products, suggesting a role of mam-
mals, including humans, as vectors for plant viruses. 

  The presence of plant viruses in the human gut high-
lights the fact that the virome may vary between individ-
uals based on diet as demonstrated for bacteria  [44] . The 
virome of the gut may also depend on environmental fac-
tors, such as geography, eating habits or ethnic differenc-
es, resulting in interindividual variability.
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  Blood 
 The human blood and derived products represent a 

constant need for blood transfusions and medical treat-
ment. However, the blood also represents an important 
viral reservoir, and some viruses may be pathogenic. 
Thus, describing the viral flora in the blood has direct 
consequences for public health. An increasing body of 
evidence argues that in apparently healthy individuals, 
the blood is not sterile and may contain many viral spe-
cies. The majority of the ‘normal’ blood viral flora is com-
posed of ssDNA viruses of the Anelloviridae   family with 
Torque teno viruses (TTVs) being the most commonly 
detected. TTVs are small non-enveloped viruses with ico-
sahedral symmetry that have high genetic diversity. In-
deed, the first genus of Anelloviridae,  Alphatorquevirus , 
contains 29 TTV species. Initially detected in a Japanese 
patient with posttransfusion hepatitis  [45] , TTVs are now 
considered commensal with a worldwide distribution 
 [46–48] . Although replicative forms of TTV DNA have 
been detected in peripheral blood mononuclear cells  [49] , 
viral loads higher than those in the blood have been iden-
tified in the bone marrow, lung, spleen and liver  [50] . 
Thus, it is tempting to speculate that the human blood 
may play a double role in TTV, both in viral replication 
and viral dissemination. Several studies have proposed 
that the main routes for TTV spread are via blood trans-
fusion, oral transmission and sexual contact  [48, 51, 52] . 
Mother-to-child transmission of TTV has also been re-
ported  [53] . These multiple routes of dissemination may 
contribute to the pandemic nature of TTV infection.

  Another frequently detected ssDNA virus family is the 
Parvoviridae   family. Parvoviruses are small non-envel-
oped viruses with icosahedral symmetry and are approx-
imately 18–26 nm in diameter. Human Parvovirus 
(PARV)4 was originally detected in the plasma of a per-
son at risk for infection with HIV through intravenous 
drug use  [54] . However, frequent detection of PARV4 
and PARV5 in the plasma of apparently healthy blood 
donors as well as in symptomatic individuals has been 
reported  [55] . In some parts of the world, including sub-
Saharan Africa, PARV4 seropositivity is frequently de-
tected with high prevalence in the population  [56] . Al-
though infections with PARV4 are not accompanied by 
long-term viremia, viral DNA sequences can likely be de-
tected in tissues for a long time after exposure  [57–59] , 
thereby encompassing a form of latency or persistence 
that is shared with other human PARV, e.g. human PARV 
B19 and adeno-associated viruses  [60–62] . 

  Eukaryotic dsDNA viruses have also been detected in 
blood donors. Egli et al.  [63]  reported the prevalence of 

the BK and JC polyomaviruses by testing the blood of 400 
donors. Interestingly, they found significant differences 
between the BK and JC viruses with respect to virus-host 
interaction and epidemiology. Moreover, lymphotropic 
Polyomavirus and human Bocavirus (HBoV) have also 
been frequently found in the peripheral blood of immu-
nocompromised and apparently healthy subjects  [64, 65] .

  An increasing number of studies have reported the 
emergence of new retroviral infections in primate hunt-
ers in Africa. Viruses from Retroviridae, such as Simian 
foamy virus, Spumaretrovirus or Human T-lympho-
tropic virus 3/4, are naturally acquired by apparently 
healthy individuals in central Africa after hunting and the 
butchering of infected meat  [66, 67] . Moreover, zoonotic 
retroviruses are frequently detected in the blood of re-
search workers in zoos  [68–70] . Although the viruses are 
found in apparently healthy individuals, the long-term 
consequences of these viral infections must be evaluated. 
Indeed, it is possible that in the case of persons with im-
mune disorders, these viruses may contribute to the de-
velopment of chronic pathologies.

  RNA viruses are also part of the viral flora in the blood, 
but they are mainly pathogenic, and in such cases they 
represent the viremic phase of infection. Only a few ex-
amples of circulating ‘asymptomatic’ RNA viruses have 
been reported, but their pathogenicity is not understood. 
Recently, several arthropod-borne viruses (arboviruses) 
belonging to the Flaviviridae family ,  such as Dengue vi-
rus, have been detected in the blood of apparently healthy 
individuals  [71] ; however, Dengue virus infections can 
cause undifferentiated fevers and even deaths in some 
cases. In 2001, Sonoda and Nakayama  [72]  described cir-
culating Measles virus in peripheral blood mononuclear 
cells from healthy children exposed to an environment in 
which measles was circulating. The Measles virus belongs 
to the Paramyxoviridae family ( Morbilivirus  genus) and 
is a major cause of child death in non-vaccinated popula-
tions. The authors found a high prevalence of Measles 
virus (23.4%) in exposed populations, but no detection of 
viral RNA was observed in unexposed children, suggest-
ing an asymptomatic circulation of the virus. 

  Respiratory Tract 
 The respiratory tract is a major gateway of infections 

for the human body, mainly due to environmental expo-
sure. We distinguish upper respiratory tract infections, 
which refer to infections of the nasopharynx, larynx, ton-
sils, sinuses and ears, from lower respiratory tract infec-
tions, which refer to infections of the trachea, bronchi and 
alveoli. The frequency of symptomatic viral respiratory 

D
ow

nloaded from
 http://w

w
w

.karger.com
/int/article-pdf/56/6/395/3011498/000354561.pdf by guest on 24 April 2024

http://dx.doi.org/10.1159%2F000354561


 Describing the Silent Human Virome 
with an Emphasis on Giant Viruses  

Intervirology 2013;56:395–412
DOI: 10.1159/000354561

399

tract infections is higher in young children compared 
with adults. Although many viruses are responsible for 
pathologies of the respiratory system (including human 
rhinoviruses, hRVs, respiratory syncytial virus, influenza 
and coronaviruses), a number of viruses may be found 
without any pathological context. In 2009, Willner et al. 
 [73]  compared the DNA virome of the upper respiratory 
tract in people with or without cystic fibrosis to determine 
whether there was a core respiratory tract virome in non-
diseased individuals. In comparison with other viromes, 
the authors found that the respiratory tract virome had 
low species richness, most likely due to physical and bio-
logical barriers. Although more than 90% of the sequenc-
es were unknown, the authors reported the presence of a 
core set of 19 bacteriophage genomes in the sputum of 
healthy individuals, reflecting the airborne contamina-
tion of each individual. For example,  Streptococcus  phage 
Cp-1,  Haemophilus influenza  phage HP-1 and  Brucella 
melitensis  16 M BrucI prophage were detected along with 
a random distribution of other phage genotypes. The 
composition of this phage community may reflect a spe-
cific environment, and we can assume that interindivid-
ual variability may be due to a difference in environmen-
tal exposure. Indeed, some organs, such as the respiratory 
tract, having frequent contact with the environment, are 
exposed to different viral communities. In contrast, in 
cystic fibrosis metagenomes, the pathology appears to fa-
vor a phage composition. The study revealed the presence 
of a core of 20 eukaryotic DNA viral genomes in healthy 
individuals, mainly composed of adenoviruses, herpesvi-
ruses and human papillomaviruses (HPVs). The authors 
suggested that eukaryotic viral communities in apparent-
ly healthy individuals likely represent transient infections 
that are rapidly cleared by immune cells or viral particles 
that are removed from the airway via mucociliary clear-
ance. 

  A metagenomic study conducted in 2012 by Wylie et 
al.  [74]  on young children with or without unexplained 
fever revealed the presence of DNA viruses, including hu-
man Parvoviridae viruses ( Dependovirus  and  Bocavirus  
genera), in the nasal swabs of healthy children. HBoV is 
the fourth most common virus found in respiratory sam-
ples and may be found in healthy subjects  [75] , but at a 
lower frequency than it is found in diseases. HBoV may 
persist in the respiratory tract for a longer period of time 
than other respiratory agents, resulting in detection of 
low levels of HBoV  [6] . The role of HBoV as a pathogen 
remains unclear, but the replication mode of this virus, 
i.e. with the need of ‘helper viruses’ (e.g. adenoviruses or 
herpesviruses), may associate it with respiratory tract dis-

eases  [76] . In their metagenomic study, Wylie et al.  [74]  
reported the presence of human adenoviruses in the nasal 
swabs of healthy children. Adenoviridae ( Mastadenovi-
rus  genus) viruses are classified into 7 subgroups (A–G) 
with 55 known serotypes. These viruses usually cause as-
ymptomatic or mild disease in humans, but occasionally 
some specific subtypes (mainly types 3 and 7) cause se-
vere syndromes, including neurological disorders or 
deaths in immunocompromised populations or children. 
In 2011, Heydari et al.  [77]  reported a case of fatal infec-
tion due to the combination of HBoV and human Adeno-
virus in a previously healthy child. Although a single in-
fection by one of these 2 viruses mainly remains asymp-
tomatic, coinfection with both HBoV and human 
Adenovirus may result in lethal disease, suggesting that 
interactions between viruses of the viral communities can 
lead to pathology.

  hRVs are small, non-enveloped, positive ssRNA vi-
ruses belonging to the Picornaviridae family ( Enterovi-
rus  genus). They comprise 3 major genotypes (hRV-A, 
B and C) that cause a wide range of respiratory illnesses, 
from mild common colds to serious lower respiratory 
tract infections  [76] . hRVs are also frequently found in 
asymptomatic children and adults. In 2006, Winther et 
al.  [78]  conducted a prospective cohort study of 15 chil-
dren aged 1–9 years over a 9- to 12-month period. They 
found a high hRV presence (21%) in the nasal swabs of 
young children without any reported symptoms. Viral 
shedding began several days prior to the onset of symp-
toms and several days after symptoms occurred. They 
also noted that the maximum duration of viral presence 
was relatively short (1–3 weeks). Longer hRV presence 
may be due to reinfection with a new hRV genotype as 
reported by Van der Zalm et al.  [79] . In 2012, Annama-
lay et al.  [80]  conducted a similar study on a prospective 
cohort of 95 children in Australia. No significant differ-
ence was observed in the hRV-A prevalence among chil-
dren with or without symptoms (i.e. a blocked or runny 
nose).

  Wylie et al.  [74]  revealed the presence of paramyxovi-
ruses (e.g. Paramyxoviridae,  Respirovirus  and  Pneumo-
virus  genera) in the nasal swabs of apparently healthy 
individuals. They also reported the presence of  Influen-
zavirus   A ,  Parechovirus  and  Coronavirus  in nasopharyn-
geal swabs, similar to that reported by Van der Bergh et 
al.  [81] . Wylie et al.  [74]  reported a difference in the 
abundance of viral sequences with febrile children exhib-
iting 1.5-fold more viral sequences than samples from 
afebrile children. They also reported a difference in the 
diversity of the viral genera present in the samples with 
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a lower diversity found in apparently healthy children. 
However, no causal relationship between a specific virus 
and the pathology was found. These observations sup-
port the hypothesis that pathology may be due to an im-
balance of the microbial communities present in the hu-
man body. 

  Due to the non-invasive nature of the sampling, main-
ly viromes of the upper respiratory tract of apparently 
healthy people have been assessed. The viral composition 
of the lower respiratory tract has been studied using 
bronchoalveolar lavage samples. One recent study on 
bronchoalveolar lavage samples from intensive care unit 
patients identified the presence of viruses from Herpes-
viridae, Paramyxoviridae and Picornaviridae families 
 [82] . Notably, these viruses were found not only in pneu-
monia patients, but also in control subjects without 
pneumonia illness. Thus, additional studies are needed 
to assess the viral composition of this part of the respira-
tory system.

  Teguments 
 The human teguments comprise the skin, hair and 

nails, and play a major role as a barrier protecting the 
human body from the outside environment. They also 
represent a complex ecosystem harboring diverse bacte-
rial, fungal and viral species. High-throughput sequenc-
ing data on the viral flora of the skin have just begun to 
be generated. Using Illumina technology, Foulongne et 
al.  [15]  detected a high diversity of prokaryotic and eu-
karyotic viral species in DNA extracts from healthy skin 
swabs. The most abundant were eukaryotic DNA virus-
es, such as ssDNA viruses of the Circoviridae   family as 
well as dsDNA viruses of the Polyomaviridae and Papil-
lomaviridae   families. Members of Circoviridae ( Gyrovi-
rus  genus) have been previously reported in the human 
skin of 4% of healthy persons  [83] . Sauvage et al.  [83]  
identified a new virus, the human Gyrovirus, in a skin 
swab sample from an apparently healthy donor. The host 
range and infection cycle of human Gyrovirus remains 
unknown. Other ssDNA viruses from the Parvoviridae 
family were also found in non-diseased human skin. Al-
though initially reported as the etiological agent of ery-
thema infectiosum, PARV B19 is commonly harbored in 
apparently healthy human skin. Bonvicini et al.  [84]  
found the prevalence of B19 to be 25% in apparently 
healthy skin biopsies. Interestingly, the group found that 
young subjects had a significantly higher rate of B19 vi-
remia compared with adults, suggesting that long-term 
viral persistence may be the common outcome after pri-
mary infection.

  Polyomaviruses are also common skin viruses. They 
have a circular dsDNA genome of approximately 5,000 
bp that is surrounded by a non-enveloped icosahedral 
capsid. Polyomaviruses were first described in 1953 in 
mice, but since then these viruses have been detected in 
other vertebrate species, including humans. In humans, 
a new Polyomavirus, Merkel cell Polyomavirus 
(MCPyV), was recently identified  [85, 86] . The pres-
ence of MCPyV in human skin has been associated with 
an aggressive form of skin cancer, Merkel cell carcino-
ma (MCC). MCPyV infections are found in 80% of 
MCCs. However, MCPyV and two newly identified 
polyomaviruses, HPyV6 and HPyV7, are also frequent-
ly shed from apparently healthy human skin  [15, 87] . In 
the case of MCC, the accumulation of deleterious muta-
tions in the MCPyV genome, including the viral T an-
tigen gene, render the virus non-infectious. Thus, the 
oncogenic role of MCPyV does not necessary reflect its 
lifestyle but rather the consequence of deleterious viral 
mutations. Other dsDNA viruses that are associated 
with neoplastic development have also been identified 
in healthy skin. Detection of α- and β-HPVs as well as 
human Herpesvirus (HHV)7 has been reported recent-
ly in skin biopsies  [88, 89] . HHV7 was initially isolated 
from CD4+ T cells obtained from peripheral blood lym-
phocytes of an apparently healthy individual  [90]  and 
was later associated with primary cutaneous T cell lym-
phomas (CTCLs). However, the low prevalence of 
HHV7 in CTCL as well its presence in healthy skin bi-
opsies suggests that HHV7 may not be the primary 
cause of CTCL  [89, 91] .

  Bacteria-infecting viruses are also frequently found in 
the human skin and most likely play an important role in 
controlling the bacterial population. Using viral metage-
nomics, viruses belonging to the Myoviridae ,  Siphoviri-
dae ,  Microviridae ,  Podoviridae   and Inoviridae families 
were identified, and viruses from the Siphoviridae   and  
 Microviridae   families were the most abundant. One com-
mon phage genera present in healthy human skin con-
sisted of bacteriophages infecting  Propionibacterium 
acnes  (Siphoviridae   family). The  P. acnes  bacterium rep-
resents a dominant member of the skin microflora and 
has also been implicated in the pathogenesis of acne. Mul-
tiple  P. acnes  bacteriophages isolated from the sebaceous 
follicles of healthy skin donors have recently been char-
acterized  [9] . Interestingly, these phages showed reduced 
genetic variability with a broad range of infecting bacte-
rial strains, suggesting the existence of evolutionary con-
straints that preserve the homogeneity of the phage pop-
ulation.  
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  Nervous System 
 Little information is available concerning the viral flo-

ra in the human nervous (central and peripheral) system 
in apparently healthy conditions. Examples of neurotrop-
ic human viruses are the Herpes simplex virus (HSV)1 
and HSV2, which belong to the Herpesviridae family. 
These viruses have a dsDNA genome located within an 
icosapentahedral capsid surrounded by an amorphous 
protein-like material (known as the tegument), which is 
in turn encapsulated by an envelope consisting of poly-
amines, lipids and glycoproteins  [76] . Genetically, HSV1 
and HSV2 are closely related, sharing approximately 70% 
homology. During primary infection, the virus enters the 
nerve endings at the peripheral mucocutaneous region. 
The viral capsid is brought via fast axonal transport into 
the neuronal cell body of the dorsal root ganglia or the 
trigeminal ganglia. The viral DNA enters the nucleus of 
the neuron where it enters a latent state  [92] . Notably dur-
ing this period, two latency-associated transcripts are ex-
pressed  [93] . Latency-associated transcripts have been 
shown to have antiapoptotic activity, thereby sustaining 
the survival of neurons. This activity illustrates the virus-
to-host adaption and the benefit of a latent persistence in 
the nervous system. Although HSV1 and HSV2 are asso-
ciated with clinical complications, the majority of the in-
fections remain asymptomatic for years or even decades. 
Indeed, under immunocompetent conditions, the reacti-
vated infection usually remains confined to the vicinity of 
a single dorsal root ganglion. It has been estimated that 
asymptomatic reactivation of HSV1 may exceed clinical 
recrudescence, and asymptomatic HSV2 shedding can 
occur in more than two-thirds of seropositive individuals 
 [94, 95] .

  Another interesting example of a neurotropic virus is 
the Borna disease virus (BDV), which is part of the Bor-
naviridae   family. BDV is an 80- to 100-nm enveloped vi-
rion, containing an 8.9-kb (–) ssRNA genome that repli-
cates in the cell nucleus  [96, 97] . In vitro   BDV induces 
non-cytopathic chronic infections in neurons  [98] . BDV 
infection was first identified in horses, and natural infec-
tions with BDV were subsequently detected in other ver-
tebrates, including humans  [99] . In this context, BDV 
was suggested as a causative agent of diverse human psy-
chiatric disorders  [100–102] . Despite these findings, the 
seroprevalence of the virus in healthy control groups 
makes the causal relationship between BDV infection and 
brain disorders hardly verifiable  [103] . Recently, endog-
enous BDV sequences homologous to the viral nucleo-
protein were detected in several mammalian species, in-
cluding humans, suggesting an ancient cohabitation with 

a BDV ancestor  [104, 105] . Overall, further efforts, espe-
cially using a viral metagenomics approach, should be put 
into the study of the viral diversity of the human nervous 
system.

  Genito-Urinary Tract 
 The viral flora of the genito-urinary tract has been 

mainly studied in pathological situations, and gaps in the 
knowledge of the viral flora in apparently healthy condi-
tions need to be filled. Asymptomatic shedding from the 
genito-urinary tract was reported mainly for dsDNA eu-
karyotic viruses of the Adenoviridae, Herpesviridae, Pap-
illomaviridae and Polyomaviridae families with the ex-
ception of ssDNA viruses of the Anelloviridae family  [83, 
106–111] . In the case of polyomaviruses, it appears that 
viral excretion was correlated with the host immune sta-
tus. Indeed, Csoma et al.  [112]  detected KI virus and WU 
virus in the urine of renal transplants but not in the con-
trol groups. Moreover, immunosuppression due to preg-
nancy led to a higher prevalence of BK virus in urine sam-
ples in pregnant women compared to non-pregnant 
women  [113] . 

  Multiple herpesviruses were also frequently detected 
in the genito-urinary tract, especially in the semen of ap-
parently healthy donors. In this case it appears that some 
herpesviruses, such as human Herpesvirus 6 A/B or the 
Cytomegalovirus, were able to attach to the sperm head 
with an intact acrosome  [108, 113] . Thus, given the po-
tential risk some herpesviruses may represent to the new-
borns, additional research is required to evaluate the im-
pact of this asymptomatic shedding from herpesvirus-
positive donor semen.

  Broad Distribution and Impact of Papillomaviruses 

in the Human Body  

 When examining the repartition of viruses according 
to their distribution in the human body ( fig. 1 ), one can 
note that DNA viruses of Herpesviridae, Papillomaviri-
dae, Polyomaviridae and Anelloviridae families are pres-
ent both in the respiratory tract, the gut, the skin, the 
blood and the genito-urinary tract. One hypothesis may 
be related to the viral-host adaptation process. For sus-
tained infection, viruses need to have wide range of body 
repartition allowing them to proliferate efficiently. 

  Papillomaviruses represent good examples of pleiotro-
pic human viruses in the human body. Papillomaviruses 
are 55- to 60-nm non-enveloped DNA viruses composed 
of a single, circular dsDNA molecule. This viral family 

D
ow

nloaded from
 http://w

w
w

.karger.com
/int/article-pdf/56/6/395/3011498/000354561.pdf by guest on 24 April 2024

http://dx.doi.org/10.1159%2F000354561


 Popgeorgiev/Temmam/Raoult/Desnues

 

Intervirology 2013;56:395–412
DOI: 10.1159/000354561

402

consists of more than 120 different HPV types, about 40 
of which are sexually transmitted HPVs and a dozen have 
been identified as the causative agents of cervical, anal, 
vaginal and penile cancer  [114] . HPVs are present in 
more than 99% of cervical cancers, and HPV type 16 
(HPV-16) and HPV-18 are the predominant causes of in-
fection in these cases  [115] . These two HPV types are in-
deed associated with 70% of all cervical cancers with pre-
dominance of HPV-16 accounting for about 50% of cases 
 [116] . More recently, papillomaviruses were linked to 
head and neck malignancies as well. In these cases, the 
primary causes for these carcinomas were attributed to 
alcohol and tobacco consumption. However, the number 
of respiratory and digestive tract cancers caused by HPV 
infections is constantly increasing  [117–119] . Indeed pa-
tients with HPV-positive carcinoma are generally young-
er adults and not alcohol and tobacco users. These carci-
nomas are mainly localized in the oropharynx and in par-
ticular at the tonsils. HPV is found with a prevalence of 
40–90% of the oropharynx cancers, depending on the 
geographical distribution  [120–122] .

  HPVs have cellular tropism for the stratified squa-
mous epithelia. Although the exact mechanism of Papil-
lomavirus tumorigenesis is not fully elucidated it is gen-
erally accepted that this effect is mediated through E6, E7 
viral proteins which control cell death and proliferation 
 [123–125] . Despite the oncogenic properties of these vi-
ruses, the majority of HPV infections remain asymptom-
atic, and they are cleared by most people without medical 
consequences. Indeed, the clearance of HPV 18 months 
postinfection in the male population is 100%, whereas in 
females it is 97%, suggesting that in the case of an immu-
nocompetent host, HPV infection manifests as a tran-
sient phenomenon  [126, 127] . The significance of their 
presence in an apparently healthy context remains un-
known. 

200 nm

a b  Fig. 2.  Detection of GBM.  a  Negative stain-
ing of a Marseillevirus-like particle (arrow) 
present in the virus-purified fraction of se-
rum from blood donor No. 27725.  b  Epi-
fluorescent microscopy images from fluo-
rescent in situ hybridization of GBM in
serum from blood donor No. 27725. The 
DNA probe was synthesized using the 
Marseillevirus genomic region, orf 152–
153, and is marked in green; nuclear
staining with DAPI dye is in blue. Scale
bar = 10 μm. 

  Fig. 1.  Description of the viral composition in the human body. 
Table summarizing the viral families documented (in green) or not 
documented (in violet) in each human system. 
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  Fig. 3.  The human virome in non-pathogenic conditions: distribution of the viral families found in the major 
human systems. Each viral group is represented with a unique color.      
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  The Human Megavirome 

 dsDNA viruses with large genomes (also known as gi-
ant viruses) represent a monophyletic group of viruses 
classified under the order of Megavirales  [128] . Giant vi-
ruses are divided into seven viral families, including Pox-
viridae, Iridoviridae, Ascoviridae, Mimiviridae, Phycod-
naviridae, Asfaviridae and the recently described Mar-
seilleviridae    [128, 129] . These viruses infect a wide range 
of eukaryotes, including phagocytic protists and humans 
 [130] . In humans, members of only two of the families, 
Poxviridae and Mimiviridae, have been linked to disease 
 [131–133] . With next-generation sequencing technolo-
gies, an accumulating body of evidence indicates the pres-
ence of these viruses in non-pathological conditions. For 
instance, a metagenomics study carried out by Willner et 
al.  [73]  detected multiple DNA sequences related to Pox-
viridae, Iridoviridae, Mimiviridae and Phycodnaviridae. 
Moreover, several studies have identified the presence of 
giant viruses in the human gut in both adults and babies 
 [16, 19, 134] . Breitbart et al.  [19]  detected sequences ho-
mologous to Lymphocystis disease virus (Iridoviridae), a 
fish-infecting pathogen, whereas Gordon et al.  [16]  de-

tected previously uncharacterized Pox-related viral se-
quences in the infant gut. 

  Recently, a new giant virus closely related to   Marseil-
leviridae, Senegalvirus, was recovered from a stool sam-
ple of a 20-year-old Senegal man  [134] . Senegalvirus was 
detected by ultradeep sequencing and was isolated using 
an amoebal coculture. The Senegalvirus dsDNA genome 
is approximately 373 kbp in length, making this genome 
the largest among marseilleviruses. In the same stool, se-
quences related to the giant Mimivirus were also found 
 [135] . 

  Another virus closely related to the Marseilleviridae 
family was recently identified in human blood. This new 
virus, Giant Blood Marseillevirus (GBM), has an estimat-
ed 357-kbp dsDNA genome surrounded by a 200-nm 
capsid ( fig. 2 ). The GBM virus was initially isolated from 
a blood transfusion pocket using a 0.45-μm filter coupled 
with high-throughput sequencing from a 32-year-old 
healthy female donor  [136] . Further testing identified 
concomitant elevated IgG levels and viral DNA in some 
blood donors, suggesting the persistence of the GBM vi-
rus in the blood. Interestingly, GBM was found to infect 
and replicate in human T cells, but not in amoebas. 

  Fig. 4.  Human virus metastable equilibri-
um in non-pathogenic conditions. Sche-
matic representation of the steady state of 
the human virome in non-pathogenic con-
ditions as regulated by three major factors 
(virus, host and environment). The dis-
equilibrium of this metastable system leads 
either to viral spreading or to viral clear-
ance.     
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Source Viral group Viral family Viral genera/species Reference

Digestive dsDNA Adenoviridae Enteric adenovirus 40, 41 139
tract Iridoviridae Lymphocystis disease virus 19

Myoviridae phiBCD7, Bacillus phage G, phiP-SSM4 17, 19
Podoviridae Enterobacteria phage P22, phage T3 17, 19
Siphoviridae Listeria phage A118, phiE125 Lactococcus phage bIL285, phiCP39-O, Clostridium 

phage phiCP39-O, Mycobacterium phage Athena, phage PA6, phage SM
16, 17, 19, 140

Unclassified phages Halophage eHP-10 17, 19
Papillomaviridae Human papillomavirus 6, 18, 66 141 
Polyomaviridae BK virus, JC virus, SV40 virus, Human polyomavirus 9, 12 25, 142, 143
Herpesviridae Epstein-Barr virus, Human cytomegalovirus 16
Poxviridae ND 16
Marseilleviridae Senegalvirus 134

ssDNA Anelloviridae TTV 144, 145 
Circoviridae Chicken anemia virus 22 – 24
Microviridae Chlamydia phage 1,3,4, Bdellovibrio phage phiMH2K, Chlamydia phage CPG1, 

Spiroplasma phage 4, Chlamydia phage CPAR39
140 

dsRNA Picobirnaviridae Human picobirnavirus 31, 41, 146
Reoviridae Human rotavirus 39

(+) ssRNA Caliciviridae Norwalk virus 28, 29, 147 
Astroviridae Human astrovirus 26, 27 
Virgaviridae Pepper mild mottle virus, Tobacco mosaic virus 41, 42
Picornaviridae Human cosavirus, Human klassevirus/salivirus, Aichi virus, Human enterovirus, 

Human parechovirus, Saffold cardiovirus, Human echovirus,
Human coxsackievirus, Human poliovirus

5, 31, 36, 37, 
32 – 35, 140

(–) ssRNA Not documented

Retroviruses Not documented

Respiratory dsDNA Adenoviridae Human adenovirus, Bovine adenovirus A 73, 74, 77, 81
tract Iridoviridae Aedes taeniorhynchus iridescent virus 73 

Herpesviridae HHV 1, 2, Bovine herpesvirus 5, Cercopithecine herpesvirus 1, 2, 9, Suid herpesvirus 1 73
Mimiviridae Acanthamoeba polyphaga mimivirus 73
Myoviridae Haemophilus phage HP1, Aeromonas hydrophila phi Aeh1, Aeromonas phi 31, 

Escherichia coli phi CP073-4 prophage, Lactobacillus plantarum phi LP65, 
Mycobacterium phi Bxz1, Pseudomonas phi KZ, Staphylococcus phi Twort,
Vibrio parahaemolyticus phi KVP40

73

Papillomaviridae HPV 73
Phycodnaviridae Chlorella virus ATCV-1, Chlorella virus FR483, Ectocarpus siliculosus virus 1, 

Paramecium bursaria Chlorella virus AR158
73

Podoviridae Streptococcus phage Cp-1, Brucella melitensis 16M BrucI 73
Polyomaviridae KI virus, WU virus 81
Poxviridae Amsacta moorei entomopoxvirus ‘L’, Melanoplus sanguinipes entomopoxvirus, 

Taterapox virus
73

Siphoviridae Bacillus subtilis phi SPBc2, Bacillus subtilis phi 105 73
Unclassified phages Bacillus cereus phage phBC6A51, Escherichia coli phi CP4-6 prophage, Escherichia 

coli phi QIN prophage, Escherichia coli phi Sp18 prophage, Mycobacterium phage 
CJW 1, Shigella flexneri phi Flex4 prophage, Xylella fastidiosa phi Xpd5 

73 

ssDNA Anelloviridae TTV, TTV-midi 110
Parvoviridae Adeno-associated virus, Human bocavirus 6, 74, 75, 77

dsRNA Not documented

(+) ssRNA Coronaviridae Human coronavirus OC43, NL63, HKU, 229E 74, 81
Picornaviridae Human rhinovirus, Human parechovirus 74, 78 – 81

Table 1.  Summary of the viral families, genera and, in some cases, species found in each human system
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Table 1 (continued)

Source Viral group Viral family Viral genera/species Reference

Respiratory
tract

(–) ssRNA Orthomyxoviridae Influenzavirus A 74, 81
Paramyxoviridae Human parainfluenzavirus 1–4, Human respiratory syncytial virus,

Human metapneumovirus
74, 148

Retroviruses Not documented

Blood dsDNA Adenoviridae Adenovirus-36, Human adenovirus 106, 149 
Baculoviridae Spodoptera litura nucleopolyhedrovirus 47
Herpesviridae HHV 3-like, Suid herpesvirus 1-like, Human cytomegalovirus, Epstein-Barr virus, 

HHV 6B, HHV 7
47, 90, 150 

Marseilleviridae Giant Blood Marseillevirus 136
Myoviridae Streptococcus pneumoniae bacteriophage EJ-1-like 47
Polyomaviridae Lymphotropic polyomavirus, BK virus, JC virus, KI virus, WU virus,

Human polyomavirus 9
63, 64, 143, 151

Papillomaviridae α-, β-, γ-HPVs 152
Poxviridae Cowpox virus-like 47
Siphoviridae Clostridium perfringens bacteriophage Φ3626, Methanobacterium phage

psiM2-like, Enterobacteria phage λ
47, 136

Unassigned Nidivirus (Heliothis zea virus 1-like) 47

ssDNA Anelloviridae TTV, TTV-midi, TTV-mini SEN virus, unclassified anelloviruses 47, 136, 153 – 155
Inoviridae Ralstonia phage RSM 1, 3 136
Microviridae Chlamydia phage φCPAR39-like 47
Parvoviridae Human bocavirus, PARV 4, 5, Adeno-associated virus 55, 65, 156

dsRNA Not documented

(+) ssRNA Hepeviridae Hepatitis E virus 157 – 159
Flaviviridae Dengue virus, Usutu virus, GB virus C 71, 154, 160 – 162

(–) ssRNA Bunyaviridae Toscana virus, Puumala hantavirus, Dobrava hantavirus 163, 164 
Paramyxoviridae Measles virus 72

Retroviruses Retroviridae Simian foamy virus, Spumaretrovirus, Human T-lymphotropic virus 3, 4,
Human endogenous retrovirus H

47, 66 – 69

Teguments dsDNA Herpesviridae HHV 7 89 
Myoviridae ND 15
Papillomaviridae α-, β-, γ- and unclassified HPVs 15, 88
Podoviridae ND 15
Polyomaviridae MCPyV, Human polyomavirus 6, 7, 9, Human polyomavirus 9-like 15, 165 
Poxviridae Vaccinia virus 166
Siphoviridae Propionibacterium phage P100A, P100D, 100.1, 101A, P105 15
Unclassified phages ND 15

ssDNA Anelloviridae TTV 167 
Circoviridae Cyclovirus NG2-like, Human gyrovirus, Circovirus-like CB-A, RW-E 15, 83
Inoviridae ND 15
Microviridae ND 15
Parvoviridae Human PARV B19, Human PARV4 168

dsRNA Not documented

(+) ssRNA Not documented

(–) ssRNA Not documented

Retroviruses Not documented

Genito-
urinary
tract

dsDNA Adenoviridae Human adenovirus 11, 21, 34, 35 106 
Herpesviridae Human cytomegalovirus, Herpes simplex virus 1, 2, Epstein-Barr virus, HHV 6A/B, 

HHV 7, HHV 8
107 108, 113, 169

Papillomaviridae HPV16, 18 107 170 
Polyomaviridae BK virus, JC virus, Human polyomavirus 9 83, 109, 143
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  In the environment, the majority of Marseillevirus-re-
lated viruses have been isolated from aquatic and soil en-
vironments, suggesting the possibility of a common in-
fectious route in humans  [129, 137, 138] . Although they 
are found in non-pathological conditions, the conse-
quences of long-term viral persistence should be further 
evaluated.

  Conclusion 

 The Human-Virus Interactome Goes Beyond Simple 
Parasitism 
 Viruses and humans coexist and are constantly inter-

acting. Historically, viruses have been classified as strict 
intracellular pathogens. However, with the development 
of new technologies for viral detection, it has become 
clear that their presence within the healthy human body 
goes beyond simple parasitism ( fig. 1 ,  3 ;  table 1 ). The role 
of the majority of eukaryotic viruses in the healthy human 
body remains unclear. Although the long-term conse-
quences of viral presence in terms of pathological condi-
tions should be evaluated, it is possible that such viruses 
may be considered commensals. In other cases, it is not a 
single virus that is pathogenic for humans but the coinfec-
tion with different viruses. The combination of HBoV 
and Adenovirus represents a good example of such coin-
fection  [77] . The presence of viruses in the human body 
without any pathological context could also be beneficial 

for the body or for the human microbial flora. An exam-
ple of symbiosis between viruses and the human host is 
the phage communities of the human gut, and these com-
munities may play an important role in the control of the 
bacterial population. Conversely, a negative interaction 
(negative for humans) is that phages may represent an 
important reservoir for bacterial resistance genes and 
may contribute to bacterial pathogenicity via horizontal 
gene transfer  [20] . As a result, the boundaries between 
mutualistic and pathogenic viruses remain elusive and 
are most likely highly dynamic throughout life  [2] .  

 The human-virus interactome should be considered as 
a complex web of interactions, defined by multiple fac-
tors. These factors can be classified into three categories: 
virus-specific (e.g. viral genotype, replication mode, host 
range, abundance), host-specific (e.g.   genetic back-
ground, age, immune system) and environment-specific 
(e.g.   geographic location, demographic distribution, ani-
mal proximity). In the case of the human virome under 
healthy conditions, the weight of each factor lays at a 
metastable equilibrium point, allowing viruses and hu-
mans to coexist naturally ( fig. 4 ). A change in one of these 
parameters could lead to the development of disease con-
ditions or the clearance of the virus from the body. From 
a medical point of view, a new paradigm is thus emerging; 
if we define an illness as a disruption of the normal 
‘healthy’ virome, then the restoration of this equilibrium 
should be the goal of medical treatment, not the elimina-
tion of all non-human microorganisms. 

Table 1 (continued)

Source Viral group Viral family Viral genera/species Reference

Genito-
urinary
tract

ssDNA Anelloviridae TTV, TTV-midi 110, 111

dsRNA Not documented

(+) ssRNA Not documented

(–) ssRNA Not documented

Retroviruses Not documented

Nervous
system

dsDNA Herpesviridae Human cytomegalovirus, Herpes simplex virus 1, 2, HHV 6A/B, HHV 8 171, 172

ssDNA Not documented

dsRNA Not documented

(+) ssRNA Flaviviridae Dengue virus 173

(–) ssRNA Bornaviridae BDV 102 103, 174

Retroviruses Not documented

 ND = No data available.
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