
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Research Paper 

 J Vasc Res 2012;49:43–49 
 DOI: 10.1159/000329821 

 Endothelial-Derived Hyperpolarization Factor 
(EDHF) Contributes to PlGF-Induced Dilation of
Mesenteric Resistance Arteries from Pregnant Rats 

 Maurizio Mandalà    a, b     Natalia Gokina    a     Carolyn Barron    a     George Osol    a  

  a    Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, College of Medicine, 
 Burlington, Vt. , USA;  b    Department of Cell Biology, University of Calabria,  Arcavacata di Rende  (CS), Italy 

that activates vascular smooth muscle BK Ca  channels, hyper-
polarization and vasodilation. This is the first study to iden-
tify the mechanism for PlGF/VEGFR-1 resistance artery dila-
tion in the pregnant state, whose attenuation likely contrib-
utes to the systemic hypertension characteristic of pre - 
eclampsia.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 PlGF is a member of the VEGF family that acts through 
the tyrosine kinase receptor VEGFR-1 which can be ex-
pressed as either a membrane-bound (Flt-1, Fms-related 
tyrosine kinase-1) or soluble form (sFlt-1). The placenta is 
the main source of PlGF during pregnancy, and its plas-
ma concentrations increase more than 8 times above 
nonpregnant levels  [1–3] . Moreover, reduced PlGF con-
centrations and increased sFlt-1 levels have been reported 
in the serum of preeclamptic women  [4, 5] , and overex-
pression of its soluble receptor (sFlt-1) induces a pre-
eclampsia-like syndrome in rats  [6] .

  The vasodilatory actions of PlGF have been reported 
in a number of vessel types, including human placental 
and internal mammary arteries  [7, 8] , piglet pulmonary 
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 Abstract 

 The aim of this study was to investigate the cellular mecha-
nism involved in the potent vasodilatory action of PlGF on 
mesenteric resistance arteries from pregnant rats. PlGF
(3 n M ) induced a vasodilation of 64  8  3.8% that was com-
pletely abolished by endothelial denudation. Significant di-
lation (28  8  4.0%) remained, however, in the presence of 
nitric oxide synthase and cyclooxygenase inhibition, and 
was associated with significant reductions in vascular 
smooth muscle cell calcium. Absence of dilation in potassi-
um-depolarizing solution (30 m M ) confirmed its depen-
dence on endothelial-derived hyperpolarization factor. Sub-
sequent studies established that vasodilation was abolished 
by pharmacologic inhibition of SK Ca  (apamin) and BK Ca  
(iberiotoxin) but not IK Ca  (tram-34) potassium channels. In 
summary, PlGF acts through the release of a combination of 
endothelium-derived relaxation factors. Based on the re-
sults of potassium channel blockade, we suggest that it in-
duces endothelial hyperpolarization via SK Ca  channel activa-
tion; this, in turn, leads to the release of a diffusible mediator 
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vessels  [9] , rat aorta and renal arterioles  [6, 10] . Earlier, we 
found PlGF to be a potent vasodilator of human and rat 
resistance arteries from several circulations (splanchic, 
uterine, subcutaneous  [11] ). The contribution of nitric
oxide (NO) was assessed using NOS inhibition with  L -
NAME, and found to vary substantially with vessel type; 
for example, NOS inhibition virtually eliminated uterine 
artery dilation to PlGF, while the effects of  L -NAME in 
mesenteric vessels were negligible.

  In view of the prevalence of PlGF in pregnancy, and 
the accumulating evidence for the attenuation of its sig-
naling contributing to the etiology of preeclampsia, the 
purpose of this study was to determine the mechanisms 
involved in its vasodilatory actions on isolated, pressur-
ized third-order mesenteric arteries from pregnant rats 
by examining its dependence on: (1) the endothelium, (2) 
endothelial-derived hyperpolarization factor (EDHF) 
and (3) potassium channel (SK Ca , IK Ca  and BK Ca ) activa-
tion. The splanchnic circulation accounts for approxi-
mately 40% of the systemic vascular resistance, and there-
fore contributes significantly to blood pressure regu-
lation in both normotension and hypertension. Our 
working hypothesis was that PlGF dilation of mesenteric 
resistance arteries (MRA) was primarily endothelium de-
pendent and mediated by EDHF through mechanisms 
linked to potassium channel activation.

  Materials and Methods 

 Isolated Rat Mesenteric Artery Reactivity 
 Adult (12- to 14-week-old) pregnant Sprague-Dawley rats were 

purchased from Charles River (Canada) and shipped to the Uni-
versity of Vermont. All procedures were approved by the Institu-
tional Animal Care and Use Committee. Third-order MRA were 
obtained from late pregnant (LP; day 20/22 of gestation, n = 32) 
animals following euthanasia with an injection of methohexital 
sodium (Brevital, 50 mg/kg, intraperitoneally) and decapitation 
in a small-animal guillotine. Isolated pressurized vessels were 
used to test the dilatory effects of PlGF.   A section of the gut 5–10 
cm distal to the pylorus was removed and placed in separate Petri 
dish containing aerated cold (4   °    C) physiological salt solution 
(PSS). Arterial segments (1–2 mm long) were dissected free from 
connective and adipose tissue and transferred to the chamber of 
a small-vessel arteriograph. One end of the vessel was tied onto a 
glass cannula and flushed of any luminal contents by increasing 
the pressure before securing the distal end onto a second cannula 
using a servo-null pressure system (Living Systems Instrumenta-
tion). All vessels were continuously superfused with aerated (10% 
O 2 , 5% CO 2 , 85% N 2 ) PSS at 37   °   C and initially pressurized to 50 
mm Hg and equilibrated for 45–60 min before beginning experi-
mentation. Lumen diameter was measured by transilluminating 
each vessel segment and using a video dimension analyzer (Living 
Systems Instrumentation) in conjunction with data acquisition 

software (IonOptix Inc.) to continuously record lumen diameter. 
Following equilibration, all vessels were preconstricted with phen-
ylephrine (0.1–0.7  �  M ) or potassium (30 m M , only for depolariza-
tion experiments) to produce a 40–50% reduction in baseline di-
ameter. Once constriction was achieved and stable for about 10 
min, PlGF-2 (mouse; R&D Systems) was added at a concentration 
of 3  !  10 –9   M  (an intermediate concentration  [11] ), and the result-
ing dilation was recorded. Some arteries were denuded of the en-
dothelium by air perfusion, and the effectiveness of denudation 
confirmed by the lack of dilation to acetylcholine (10 –6   M ).

  Additional experiments using pharmacological blockade of 
NOS and cyclooxygenase (COX) were carried out using several 
inhibitors, for example N � -nitro- L -arginine ( L -NNA; 10 –4   M ) + 
N � -nitro- L -arginine methyl ester ( L -NAME; 10 –4   M ) for NOS and 
indomethacin (10 –5   M ) for COX. Finally, to better understand the 
ionic basis for vasodilation, we used several potassium channel 
inhibitors: apamin (10 –7   M ) for SK Ca , TRAM-34 (10 –5   M ) for IK Ca , 
charybdotoxin (5  !  10 –8   M ) for IK Ca  and BK Ca , and iberiotoxin 
(10 –7   M ) for BK Ca  channels. Vessels were preincubated with in-
hibitors for 20 min before pre-constriction with phenylephrine 
and the addition of PlGF.

  Selective Loading of Smooth Muscle Cells with Fura-2 and 
Measurement of Intracellular [Ca 2+ ] i  
 Heat-polished glass cannulas were used in all experiments to 

prevent accidental damage of endothelium during the cannulation 
procedure and to avoid diffusion of fura-2 to the endothelial layer. 
Smooth muscle cell (SMC) loading with fura-2 was performed by 
extraluminal incubation of pressurized (10 mm Hg) mesenteric 
arteries in fura-2 AM (5  �  M ) solution at room temperature in the 
dark for 60 min. Fura-2-loaded arteries were washed 2–3 times, 
and then continuously superfused with aerated PSS at 37   °   C. Ra-
tiometric measurements of fura-2 fluorescence from SMC were 
performed using a photomultiplier system (IonOptix Inc.). Exper-
imental ratios were corrected for background fluorescence taken 
from each artery before loading with fura-2. Background-correct-
ed ratios of 510-nm emission were obtained at a sampling rate of
5 Hz from arteries alternately excited at 340 and 380 nm. The arte-
rial lumen diameter was simultaneously monitored using the Ion-
Wizard acquisition system (IonOptix Inc.).

  All experimental protocols were started following an addi-
tional 15-min equilibration period at 10 mm Hg to allow intracel-
lular de-esterification of fura-2 AM. SMC [Ca 2+ ] i  was calculated 
using the following equation  [12] : [Ca 2+ ] i  = K d  � (R – R min )/(R max  – 
R), where R is an experimentally measured ratio (340/380 nm) of 
fluorescence intensities, R min  is a ratio in the absence of [Ca 2+ ] i  
and R max  is a ratio at Ca 2+ -saturated fura-2 conditions,  �  is a ratio 
of the fluorescence intensities at 380-nm excitation wavelength at 
R min , and R max  ! R min , R max  and  �  were determined by an in situ 
calibration procedure in the presence of ionomycin (10  �  M ) and 
nigericin (5  �  M ). The K d  (the dissociation constant for fura-2) was 
282 n M , as determined by in situ titration of Ca 2+  in fura-2-loaded 
small arteries  [13] .

  Drugs and Solutions 
 All chemicals were purchased from Sigma Chemical, includ-

ing salts for physiological solution,  L -NNA,  L -NAME, indometh-
acin, phenylephrine, diltiazem, papaverine, apamin, TRAM-34, 
charybdotoxin and iberiotoxin. PlGF-2 (mouse) was purchased 
from R&D Systems.
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  PSS was composed of (in m M ): 119 NaCl, 4.7 KCl, 24.0  NaHCO 3 , 
1.2 MgSO 4 , 0.023 EDTA, 1.6 CaCl 2 , 1.2 KH2PO 4  and 11.0 glucose, 
pH = 7.4. Ionomycin and nigericin were obtained from Calbio-
chem. Fura-2-AM and pluronic acid were purchased from Invit-
rogen. Fura-2-AM was dissolved in dehydrated DMSO as a 1 m M  
stock solution, frozen in small aliquots and used within 1 week
of preparation. For the fura-2 calibration procedure, we used a 
solution of the following composition: 140 m M  KCl, 20 m M  NaCl, 
5 m M  HEPES, 5 m M  EGTA, 1 m M  MgCl 2 , 5  �  M  nigericin and 10 
 �  M  ionomycin, pH = 7.1.

  Statistical Analysis 
 Relaxation to PlGF was expressed as percent of maximal di-

ameter, which was determined at the end of each experiment by 
the addition of a diltiazem (10  �  M ) + papaverine (100  �  M ) cock-
tail. Data are expressed as means  8  SEM, where n is the number 
of arterial segments studied. The n values refer to both number of 
vessels and number of animals. Differences in responses between 
groups were determined with one- or two-way ANOVA followed 
by a post hoc Bonferroni test for repeated-measures analysis. Dif-
ferences were considered significant at p  ̂   0.05.

  Results 

 Based on an earlier study  [11] , a single intermediate 
concentration of PlGF (3 n M ) was used to standardize 
the vasodilatory stimulus. As shown in  figure 1 , this 
concentration consistently produced vasodilation that 
averaged 64  8  3.8% of the maximal vasodilation 
achieved in a relaxing solution containing diltiazem and 
papaverine.

  PlGF-induced vasodilation was closely correlated with 
a reduction in vascular smooth muscle (VSM) calcium, 
as seen in the tracing from one vessel shown in  figure 2 . 
Note the close association between oscillations in calci-
um and arterial diameter, as well as the gradual reduction 
in both average and phasic changes in calcium induced 
by PlGF over a period of 8–10 min. By comparison, both 
calcium and diameter responses were much more rapid 
in response to ACh, with maximal effects observed with-
in a minute of drug application.

  In subsequent experiments, the protocol was modified 
slightly to include a brief (10–15 min) washout period pri-
or to a second stimulation with the same concentration 
of PlGF (3 n M ). As seen in  figure 3 , the reductions in VSM 
calcium and the extent of vasodilation were both signifi-
cantly increased in response to the second application of 
PlGF. The half-time (T 1/2 ) of the vasodilator response was 
also significantly reduced from 437  8  41 to 177  8  20 s 
(n = 7); by comparison, T 1/2  for the ACh effect was only 
11  8  1 s (n = 7). Thus, in contrast to the tachyphylaxis 
commonly observed in response to vasoactive stimuli, 

pre-exposure to PlGF significantly potentiated its subse-
quent effect.

  PlGF vasodilation was eliminated by endothelial de-
nudation ( fig. 1 ). Moreover, in intact vessels, preincuba-
tion with two NOS inhibitors ( L -NAME,  L -NNA) and a 
COX inhibitor (indomethacin) only reduced the extent of 
dilation by half, to an average of 28  8  4.0% relative to 
maximal (p  !  0.01;  fig. 1 ).

  To evaluate the involvement of the EDHF in the sig-
nificant residual response, vessels were preconstricted to 
a comparable extent (40–50%) with a 30 m M  potassium-
depolarizing solution instead of phenylephrine, thereby 
preventing hyperpolarization. As shown in  figure 4 , in 
the presence of NOS + COX inhibition, vasodilation to 
PlGF was completely eliminated, pointing to EDHF/po-
tassium channel involvement.

  In the last series of experiments, preconstriction was 
induced with phenylephrine, and vessels preincubated 
with potassium channel inhibitors prior to the addition 
of PlGF. As shown in  figure 5 , the combination of apamin 
and charybdotoxin (SK Ca  and IK Ca /BK Ca  channel inhibi-
tors, respectively), or of apamin or iberiotoxin alone, ef-
fectively blocked PlGF vasodilation. In contrast, TRAM-
34 (an IK Ca  potassium channel inhibitor) was without ef-
fect ( fig. 5 ).
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  Fig. 1.  PlGF vasodilation is endothelium dependent, and signifi-
cant residual dilation remains in the presence of NOS + COX in-
hibition: intact and endothelium-denuded MRA were precon-
stricted with phenylephrine prior to being exposed to PlGF
(3 n M ). Intact arteries were used in the presence of inhibitors of 
NOS ( L - L  =  L -NAME +  L -NNA; each at 100  �  M ) and cyclooxygen-
ase (I = indomethacin at 10  �  M ). Data are reported as means  8  
SEM; n = 4;  *  p  !  0.01,  *  *  p  !  0.001. 
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  Fig. 2.  PlGF vasodilation is associated with 
a reduction in VSM calcium: original trace 
demonstrating reductions in SMC [Ca 2+ ] i  
and dilation of MRA in response to appli-
cation of 3 n M  PlGF or 1  �  M  ACh. 

  Fig. 3.  Effects of repeated PlGF application 
on arterial VSM calcium and diameter re-
sponses: graph summarizing the vasodila-
tory ( a ) and SMC [Ca 2+ ] i  responses ( b ) of 
mesenteric arteries to successive applica-
tion of 3 n M  PlGF. A time of 15 min was 
necessary to wash out the first application 
of PlGF prior to any readdition. The effects 
of 1  �  M  ACh are shown for comparison. 
Vasodilation is expressed as a percentage 
of maximal response obtained in papaver-
ine and diltiazem.  L -NAME,  L -NNA and 
indomethacin were present throughout all 
experiments. Data are reported as mean  8  
SEM, n = 7.  *  p  !  0.05. 

  Fig. 4.  Complete inhibition of PlGF vasodilation by potassium-
induced depolarization: intact MRA were preconstricted with 
high-potassium (High K +  = 30 m   M ) depolarizing solution prior to 
being exposed to PlGF (3 n M ).  L -NAME,  L -NNA and indometha-
cin ( L - L -I.) were present throughout all experiments. Data are 
shown as means          8  SEM; n = 4;  *  p  !  0.05. 

  Fig. 5.  PlGF vasodilation is potassium channel dependent: intact, 
Phe-preconstricted MRA were pre-treated with      L -NNA +
 L -NAME ( L - L , 100      �  M ) and indomethacin (I, 10  �  M ) along with 
combinations of potassium channel inhibitors: apamin (Apa, for 
SK Ca  channels), charybdotoxin (ChTx, for IK Ca  and BK Ca  chan-
nels), iberiotoxin (IbTx, for Bk Ca  channels) and TRAM-34 (for 
IK Ca  channels), prior to the application of PlGF (3 n M ). Data are 
reported as mean  8  SEM; n = 4;  *  p  !  0.001. 
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  Discussion 

 The main findings of this study are that (1) PlGF vaso-
dilation of mesenteric arteries from pregnant animals is 
entirely endothelium dependent, (2) the significant re-
sidual vasodilatory component seen in the presence of 
NOX + COX inhibition is due to an EDHF mechanism, 
and (3) the signaling pathway involves a combination of 
SK Ca  and BK Ca  potassium channel activation that induces 
a reduction in VSM cytosolic calcium secondary to mem-
brane hyperpolarization, most likely from a diffusible 
molecule derived from the endothelium.

  VEGF vasodilation is mediated mainly by VEGFR-2 
through varying mechanisms in different blood vessels 
 [8, 15, 16] . Much less is known about the vasodilatory ef-
fects of PlGF, which only binds to the VEGFR-1 receptor 
 [17] , whose physiological functions are not well under-
stood. Plasma concentrations of PlGF increase substan-
tially during pregnancy, rising more than 8 times above 
control levels  [1–3] .

  Excess soluble VEGFR-1 (sFlt-1) is associated with pre-
eclampsia in women, and its overexpression induces a 
preclampsia-like syndrome in rats  [6, 18, 19]  that is 
thought to result from the reduced availability of VEGF 
and PlGF to tissues. We recently documented a potent 
vasodilatory effect of PlGF on resistance vessels from 
women and rats  [11] , including an effect on uterine vessels 
from both species that suggests that PlGF may augment 
uterine blood flow during pregnancy. These observations 
suggest that loss of PlGF/VEGF vasodilatory influence at 
the level of the vascular wall may reduce uteroplacental 
blood flow and impair flow-induced expansive remodel-
ing, as has been observed in the uterine circulation under 
conditions of systemic NOS inhibition  [20] .

  Because the mesenteric circulation contributes signif-
icantly to total peripheral resistance, and in view of re-
ports associating reduced PlGF/VEGF signaling with 
preeclampsia  [4, 5, 21, 22] , we were interested in better 
understanding the action of PlGF on resistance arteries 
from the gut. The potent vasodilatory effect observed in 
intact MRA was lost in denuded arterial segments, dem-
onstrating that the endothelium was both necessary and 
sufficient for its action. Although other studies have doc-
umented PlGF vasodilation in other types of vessels  [7–9] , 
this is the first proof of its endothelial dependence in re-
sistance vessels, and during pregnancy.

  The next series of experiments were aimed at identify-
ing the nature of the endothelial vasodilator-derived fac-
tors that mediate the PlGF vasodilation. It is well known 
that pregnancy increases the expression of both NO and 

EDHF, the latter especially in resistance arteries  [23–27] . 
Here, we used an intermediate concentration of PlGF
(3 n M ) to examine the dilatory mechanism. For reference, 
physiological concentrations of free PlGF in pregnant 
women are approximately 30 n M  (500 pg/ml).

  Approximately half of the overall effect remained in 
the presence of NOS + COX inhibition, pointing to a sig-
nificant EDHF component. Complete inhibition of vaso-
dilation by preconstriction with potassium-depolarizing 
solution was confirmatory in this regard.

  The involvement of VSM calcium handling mecha-
nisms can be seen in the fura-2 data, which show the close 
correlation between oscillations in intracellular calcium 
and vessel diameter, exhibited as vasomotion. Applica-
tion of PlGF produced a slow decline in calcium concen-
trations and a gradual vasodilation that took almost 10 
min to stabilize. Conversely, the action of ACh was swift, 
with full dilation in 30–60 s.

  These kinetics likely reflect differences between tyro-
sine kinase and muscarinic receptor pathway activation. 
Interestingly, in contrast to the tachyphylaxis often seen 
in response to vasoactive stimuli in vitro  [28] , a second 
application of PlGF produced a greater reduction in VSM 
calcium and larger vasodilation. VEGF and PlGF signal-
ing is thought to involve receptor dimerization  [29] , and 
it is possible that the initial exposure to PlGF facilitated 
subsequent responses via this mechanism (i.e. stimulated 
the formation of homodimers, and their associated sub-
membrane signaling linkages that increase both the 
speed and the amplitude of the vasodilatory response to 
repeated stimulation). This hypothesis, while specula-
tive, is supported by the fact that the half-time to maxi-
mal response was reduced  1 60% in response to the sec-
ond stimulus. Although cross-talk and interactive signal-
ing have been described for PlGF/VEGF receptors  [30] , it 
is not known whether these mechanisms pertain to vaso-
dilatory responses.

  Although the number of candidate molecules for 
EDHF is growing  [31–33] , its identity is still not estab-
lished and may differ in vessel types  [34] . On the other 
hand, it is generally accepted that endothelial SK Ca  and 
IK Ca  channels play a pivotal role in mediating EDHF ef-
fects in many microcirculatory vascular beds  [25, 35–37] .

  A determination of the cellular distribution of potas-
sium channel subtypes in MRA was beyond the scope of 
this study. Several recent reports  [38, 39]  support the lo-
calization of SK Ca  channels on the endothelium. The 
combined observations of PlGF dilation being complete-
ly endothelium dependent and of its action being abol-
ished by apamin strongly suggests a linkage between the 
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