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ment, differentiation and plasticity of the GnRH system. In 
addition, the involvement of genetic deficits in semaphorin 
signaling in some forms of CHH in humans is discussed. 
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 Introduction 

 The normal development of the central nervous sys-
tem depends on the accurate migration of neurons from 
their site of production to their final location and their 
appropriate integration into functional networks. Among 
the numerous classes of proteins that guide this neuronal 
migration, one of the largest, that of the semaphorins, is 
phylogenetically conserved across species from nema-
todes and insects to vertebrates, including humans. De-
spite their initial identification in the nervous system, the 
semaphorins and their receptors, the plexins and neuro-
pilins, are involved in a wide variety of developmental 
and pathological processes, including the development of 
the cardiovascular system, the immune response and tu-
mor progression [reviewed in  1–9 ]. Among their various 
functions, semaphorins and their receptors play a key role 
in the central neuroendocrine regulation of reproduction 
by controlling the establishment of the neural circuitry 
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 Abstract 

 The semaphorin proteins, which contribute to the morpho-
genesis and homeostasis of a wide range of systems, are 
among the best-studied families of guidance cues. Much re-
cent research has focused on the role of semaphorins in the 
development and adult activity of hormone systems and, 
reciprocally, how circulating reproductive hormones regu-
late their expression and function. Specifically, several re-
ports have focused on the molecular mechanisms underly-
ing the effects of semaphorins on the migration, survival 
and structural and functional plasticity of neurons that se-
crete gonadotropin-releasing hormone (GnRH), essential 
for the acquisition and maintenance of reproductive com-
petence in mammals. Alterations in the development of this 
neuroendocrine system lead to anomalous or absent GnRH 
secretion, resulting in heterogeneous reproductive disor-
ders such as congenital hypogonadotropic hypogonadism 
(CHH) or other conditions characterized by infertility or sub-
fertility. This review summarizes current knowledge of the 
role of semaphorins and their receptors on the develop-
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responsible for the secretion of gonadotropin-releasing 
hormone (GnRH), a decapeptide that acts as the ‘master 
molecule’ controlling fertility.

  GnRH-secreting neurons in vertebrates originate out-
side the brain, in the nasal placode  [10] , during embry-
onic life, and migrate into the brain along the olfactory/
vomeronasal and terminal nerves to their principal target 
region, the preoptic area of the hypothalamus  [11, 12]  
( fig. 1 a). These neurons are then integrated into the net-
work of neurons and glia responsible for the timely secre-
tion of GnRH into the pituitary portal circulation, which 
carries the neurohormone into the anterior pituitary, 
where it stimulates the release of gonadotropins from spe-
cialized cells, the gonadotropes. The gonadotropins, lu-
teinizing hormone (LH) and follicle-stimulating hormone 
in turn act on peripheral reproductive organs to regulate 
the onset of puberty, gametogenesis and estrous cycling 
 [13] . The abnormal development or function of this hypo-
thalamic-pituitary-gonadal axis leads to GnRH deficiency 
in humans, i.e. congenital hypogonadotropic hypogonad-
ism (CHH), a condition characterized by incomplete or 
absent puberty and infertility  [14] . Understanding the 
mechanisms regulating the correct development and 
functioning of the GnRH neural network is thus key to 
understanding the pathogenesis of human reproductive 
disorders and devising appropriate therapeutic strategies.

  In this review, I will provide an overview of current 
knowledge regarding the involvement of semaphorins and 
their receptors in the establishment of the rodent and hu-
man GnRH system, and specifically the motility and sur-
vival of these neurons as well as the periodic growth and 
retraction of their axons, necessary for the coordinated re-
lease of GnRH into pituitary portal blood vessels during 
appropriate phases of the estrous cycle. In addition, I will 
present evidence for the regulation of semaphorin expres-
sion in the hypothalamus by reproductive hormones, and 
the significance of these findings to our understanding of 
the functional plasticity of the GnRH system and the 
pathophysiology of reproductive disorders.

  Semaphorin Expression and Role in the 

Development of the Olfactory/GnRH Systems 

 The GnRH neuronal migratory process is one of the 
best-characterized examples of axonophilic migration in 
the forebrain  [15] . GnRH neurons complete their differ-
entiation within the olfactory/vomeronasal placode dur-
ing early embryonic stages and migrate along the nasal 
septum and the cribriform plate, and proceed into the 

forebrain along the vomeronasal nerves (VNNs)/termi-
nal nerves (TNs)  [11, 12, 16]  ( fig. 1 a). From there, they 
send projections to the median eminence (ME), where 
they secrete their neurohormone into the pituitary portal 
circulation for the activation of pituitary gonadotropes.

  The list of potential signaling molecules responsible 
for the correct migratory process and targeting of GnRH 
neurons to the final hypothalamic target areas has length-
ened during the last decade  [10, 17, 18] . However, even 
the large number of molecules identified so far likely un-
derestimates the complexity of the potential interactions 
involved. Indeed, GnRH neurons spatially and temporal-
ly travel across areas (e.g. the nasal region, nasal-fore-
brain junction and forebrain;  fig. 1 a), each containing a 
variety of guidance molecules and factors. In addition, 
many molecules defy anatomical boundaries by function-
ing in multiple areas and may induce different responses 
depending on the receptor complexes expressed by GnRH 
neurons as a function of time (embryonic stage) and 
space (anatomical localization). 

  The development of the olfactory/vomeronasal system 
and of the GnRH system are intimately intertwined, and 
several semaphorins are expressed in the developing ol-
factory/vomeronasal system and along the GnRH migra-
tory route during embryonic life ( fig. 1 b)  [19–29] . Indeed, 
it is well established that the guidance provided by the 
olfactory/vomeronasal axonal pathway is an important 
prerequisite for the establishment of an adult pattern of 
GnRH neuron distribution  [10] . However, little is known 
as to what controls the complex spatiotemporal events 
involved in coordinating these diverse signals produced 
by olfactory/vomeronasal axons and the response of 
GnRH neurons to them, or even how the expression of 
semaphorin receptors is regulated in these neurons, al-
though recent studies have begun to elucidate some of the 
complex molecular mechanisms involved ( fig. 1 c).

  Class 3 Semaphorins 
 The well-characterized class 3 secreted semaphorins 

act as chemorepellents for specific yet partially overlap-
ping populations of developing neurons. These semapho-
rins bind to neuropilins (Nrp), which act as ligand-bind-
ing semaphorin co-receptors, and signal through another 
class of receptors, the plexins. In addition, the semaphorin 
receptor complex includes other modulatory elements, re-
sulting in the potential for unique and context-specific 
signaling properties despite the overlapping expression of 
several related molecules  [5] . Four class 3 semaphorins, 
Sema3A, Sema3B, Sema3C and Sema3F, are expressed in 
and around the developing olfactory/vomeronasal system 
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 [20, 22, 23, 28]  as well as in the target regions of the olfac-
tory and vomeronasal nerves, namely the main and acces-
sory olfactory bulb ( fig. 1 b). The neuropilins and plexins 
are concomitantly expressed in the olfactory system: Nrp1 
and 2, the specific co-receptors of the class 3 semaphorins, 
are expressed by sensory neurons in the main and acces-
sory olfactory epithelia (OE) of rodents and zebrafish  [20–
22, 30] , while PlexinA1 is robustly expressed in the vom-
eronasal organ (VNO) and the VNNs  [31] . It has become 
clear that repulsive guidance mechanisms play an essen-
tial role in axonal pathfinding and target recognition, and 
several studies have implicated the class 3 semaphorins in 
the guidance and fasciculation of olfactory and vomero-
nasal neurons  [22, 23, 28, 32, 33] . These semaphorins, 
which are secreted, can thus act by local diffusion, steering 
growing axons out of regions in which they are released 
and thereby channeling them to the correct target areas. 
Interestingly, in the absence of signaling of class 3 sema-
phorins through their receptors, the structure and func-
tion of the GnRH system are altered. For instance, mice 
knocked out for Nrp2  (Nrp2  −/−  ) , the receptor for secreted 
Sema3F  [34] , display an abnormal accumulation of GnRH 
neurons in the nasal compartment, potentially due to the 

defasciculation of olfactory/vomeronasal axons  [21, 34]  
and the resulting failure of the neurons to migrate to their 
forebrain destinations ( fig. 1 c). Consistent with this deficit 
of GnRH neurons at their final location, these  Nrp2  −/−  
mice are typically infertile  [21, 35] .

  Sema3A is a secretory protein with repulsive effects on 
primary olfactory axons expressing the co-receptor Nrp1 
 [23, 33, 36] . It is strongly expressed in the developing OE 
and vomeronasal epithelium, in the olfactory bulb and, to 
a lesser extent, in the nasal mesenchyme ( fig. 1 b). Inter-
estingly, in this region, Sema3A is also expressed by olfac-
tory ensheathing cells (OECs), which enwrap and guide 
olfactory nerves toward the olfactory bulbs  [23, 37] . Dur-
ing embryonic development, GnRH neurons travel to-
gether with other neuronal cells apposed to growing fi-
bers and OECs both in vivo and in vitro, forming the so-
called migratory mass that emerges from the presumptive 
VNO  [38–40] . 

  Recently, two groups have shown that OECs are neural 
crest derivatives  [40–42] , challenging the dogma that the 
olfactory system is composed of only placodal derivatives 
and offering new insights into human reproductive pa-
thologies such as Kallmann’s syndrome (KS), an inherit-

a

c

b

  Fig. 1.  The migratory route of GnRH neurons and expression/role 
of semaphorins.  a  Schematic representation of the head of a mouse 
embryo at E14.5, depicting the scaffold formed by the olfactory 
nerve (ON) and VNN/TN, along which GnRH cells migrate from 
the nose to the ventral forebrain. oe = Olfactory epithelium; vno = 
vomeronasal organ; nm = nasal mesenchyme; n/fb j = nasal/fore-

brain junction; aob = accessory olfactory bulb; mob = main olfac-
tory bulb; vfb = ventral forebrain.  b  Different semaphorins ex-
pressed in the developing nasal region.  c  Mechanisms of action of 
the semaphorins indicated on GnRH neuron motility and/or nav-
igation along olfactory/vomeronasal nerves. Adapted from Mes-
sina and Giacobini  [145]  with permission. 
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ed developmental disease that often includes multiple 
neural crest defects. Today, it is well established that some 
forms of KS involve the failure of olfactory/TN fibers to 
establish proper contact with the forebrain. In this con-
text, it is clear that the neural crest-derived OECs could 
be important players in both normal and abnormal olfac-
tory development and GnRH neuronal migration. As 
such, the role of these cells in the etiology of the defects 
observed in KS needs to be further investigated. Notably, 
several guidance molecules known to be crucial for con-
trolling GnRH neuronal migration, such as NELF/Jacob, 
SDF-1α, Sema3A and Sema4D  [23, 43–45] , are expressed 
by OECs  [38, 46, 47]  and this list is likely to lengthen in 
the coming years.

  Sema3A is also expressed by migratory GnRH neurons 
in rodents, while the olfactory/vomeronasal axons along 
which they migrate into the brain express Nrp1  [48, 49] , 
as does the caudal branch of the VNN/TN  [50] . We have 
recently not only confirmed these findings in the E14.5 
mouse embryos, but extended them to humans, with the 
observation of similar immunofluorescence patterns in 
the brain of a 9-week-old human fetus  [50]  ( fig. 2 a). Nev-
ertheless, much still needs to be elucidated regarding the 
role of semaphorins in the navigation of GnRH neurons 
and of the VNNs during embryonic life. 

  We and others have recently shown, using in vitro ex-
periments and mouse genetics, that Sema3A signals 
through both Nrp1 and Nrp2 to control the development 
of the GnRH system  [48–50] . The lack of either of these 
receptors or Sema3A leads to a fetal KS-like phenotype in 
mice  [51] , where GnRH neurons and vomeronasal axons 
fail to enter the brain but accumulate at the dorsal surface 
of the cribriform plate  [48–50] . The aberrant projection 
of the VNNs in the absence of Sema3A signaling leads to 
considerable abnormal cell migration in these mutants 
 [50]  ( fig. 2 b, c). In addition, in mice lacking a functional 
semaphorin binding domain in Nrp1 ( Nrp1  sema/sema  mice; 
 fig. 2 d–f), the labeling of axons with DiI at E14.5 reveals 
the abnormal projections of the VNN/TN in the ventral 
forebrain. The normal distribution of GnRH neurons be-
tween the nose and brain and their adult numbers in con-
ditional mutant mice lacking Nrp1 only in GnRH neu-
rons ( GnRH::cre;Nrp1  loxP/loxP  mice)  [50]  further confirms 
that the defective migration of GnRH neurons in   these  
 embryos is due to the abnormal routing of VNN/TN into 
the ventral forebrain, as remarked above, and is not a cell-
autonomous trait ( fig. 2 d, f). Moreover, in  Nrp1  sema/sema  
newborn mice, many axons of olfactory receptor neurons 
also remain stuck at the dorsal aspect of the cribriform 
plate and do not project into the olfactory bulb glomeru-

li ( fig. 2 f, g), a characteristic that resembles the hallmark 
olfactory defects of KS.

  Neuropilins, in addition to their role in semaphorin 
signaling, also act as receptors for vascular endothelial 
growth factor (VEGF)  [52–54] , a molecule that plays a key 
role in vascular development and angiogenesis under both 
physiological and pathological conditions  [55–58] . It has 
been shown that Sema3A-mediated axon guidance coop-
erates with the alternative Nrp1 ligand VEGF164, which 
ensures that migrating GnRH neurons reach the brain by 
mediating neuronal survival  [49] . However, while it was 
previously assumed that (1) given the lack of an intracel-
lular catalytic domain, Nrp1 used KDR as a co-receptor 
for the transduction of VEGF-mediated signals  [59] , and 
(2) the neuronal survival-promoting effects of VEGF were 
thus mediated by KDR  [60–62] , these assumptions have 
been overturned by a study by Cariboni et al.  [49]  demon-
strating that this survival signaling relies on neuronal and 
not endothelial Nrp1 expression and occurs independent-
ly of KDR, the main VEGF receptor in blood vessels. In-
stead, VEGF164 signaling in migrating GnRH neurons 
and its promotion of their survival occur via the co-acti-
vation of ERK and AKT signaling pathways through Nrp1. 

  Class 4 Semaphorins 
 The role of the transmembrane semaphorins Sema4A, 

Sema4B and Sema4C in the development of the olfactory 
system is unclear at present, even though these molecules 
are highly expressed in the main OE toward the end of 
embryonic development in rodents (E16–E19)  [28] . Giv-
en their temporal and spatial distribution, it has been hy-
pothesized that they might regulate the timing of olfac-
tory axon entry into the olfactory bulb and/or the forma-
tion of synapses between olfactory receptor neurons and 
mitral cells  [28] . This is probably true for Sema4C, which 
is known to bind to proteins involved in neurite out-
growth and synapse formation  [63, 64] .

  Sema4D exists in two forms, a membrane-bound form 
and a soluble active form that is ‘shed’ into the extracel-
lular space by the proteolytic cleavage of the membrane-
bound form  [65, 66] . Among its many known roles, it acts 
as a signal triggering axonal growth cone collapse  [67]  
and induces the chemotaxis of epithelial and endothelial 
cells. In addition, through the coupling of its receptor 
PlexinB1 with Met tyrosine kinase, the receptor for hepa-
tocyte growth factor (HGF), it can also function as a pro-
angiogenic factor  [68–70] . Sema4D is present in the nasal 
mesenchyme, although its expression is higher at the na-
sal/forebrain junction ( fig.  1 b), while its receptor Plex-
inB1 is highly expressed not only in the developing nasal 
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  Fig. 2.  Involvement of Nrp1 in GnRH neuron migration.  a  Sagittal 
section of the frontonasal region in a 9-week-old human fetus. In 
this region, GnRH cells (green) migrate in close contact with 
Nrp1-immunoreactive axons (red). Nrp1 immunoreactivity is al-
so detectable in the VNO, along the vomeronasal nerve (vnn). 
Moreover, migrating GnRH cells (arrowheads) as well as other
cellular elements belonging to the migratory mass (mm) are also 
Nrp1-immunoreactive.  b ,  c  Defects in GnRH cell migration in 
 Nrp1  sema/sema  mutant mice at E14.5.  d  A crystal of the DiI lipophil-
ic fluorescent dye was placed in the VNO lumen to anterogradely 
label vomeronasal axons. The VNN extends across the medial as-
pect of the olfactory bulb and projects both dorsally, to the acces-
sory olfactory bulb, and caudally, to the ventral forebrain (vfb).
 e  Sagittal sections of the rostral and ventral forebrain regions (left 
panels), and detail of the caudal branch of the VNN (right panels) 
in  Nrp1  +/+  and  Nrp1  sema/sema  E14.5 mouse embryos, 3 weeks later 

DiI injection. In mutant mice, fibers in the caudal branch are 
scarce compared to those in wild-type mice.  f  Schematic represen-
tation of the head of an  Nrp1  sema/sema  mouse embryo at E14.5, sum-
marizing the alterations in the olfactory nerve (ON)/VNN scaffold 
along which GnRH cells migrate from the nose to the ventral fore-
brain.  g  Coronal sections of the olfactory epithelium (oe) and ol-
factory bulb (ob; left panels), and detail of the olfactory bulb show-
ing the olfactory nerve layer (nl) and glomerular layer (gl; right 
panels) in newborn (P0)  Nrp1  +/+  and  Nrp1  sema/sema  mice. Axons
of olfactory receptor neurons are labeled (red) using an antibody 
directed against the olfactory marker protein (OMP). In the
 Nrp1  sema/sema  mouse, the immunolabeling is both more extensive 
beneath the ventromedial aspect of the olfactory bulb (asterisks) 
and markedly reduced in the glomerular layer (arrowheads) com-
pared to wild-type mice. For other abbreviations, see the legend to 
figure 1. Adapted from Hanchate et al.  [50]  with permission. 
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placode but also by olfactory axons and GnRH cells dur-
ing embryonic life  [19]  ( fig. 1 c). In addition, it has recent-
ly been shown that besides the nasal mesenchyme, the 
OECs represent a major source of Sema4D production at 
these anatomical locations  [38] .

  Sema4D has been proposed to be involved in the guid-
ance of GnRH neurons from the olfactory placode toward 
the forebrain through its binding to PlexinB1  [19] . An 
analysis of PlexinB1-deficient mice has revealed altered 
migration of GnRH neurons, although no abnormalities 
were found in the development or organization of olfac-
tory axons  [19] , which suggests that the migratory defect 
might be cell-autonomous rather than dependent on al-
terations of the olfactory axonal pathway. Interestingly, it 
has been shown that reproduction is also impaired in Se-
ma4D-knockout mice as a consequence of the significant 
decrease in hypothalamic GnRH cell population and/or 
reduced ovarian follicle maturation observed in these 
mutants  [71] . Finally, in vitro functional experiments 
show that Sema4D promotes the directional migration of 
immortalized GnRH cells by coupling PlexinB1 with the 
activation of Met tyrosine kinase, the receptor for HGF 
( fig. 1 c)  [19] , which has been previously shown to play an 
important role in ensuring correct GnRH neuronal mi-
gration  [72] . Notably, the expression pattern of HGF in 
the nasal region of mouse embryos parallels that of Se-
ma4D  [72]  and, indeed, an additive effect of HGF and 
Sema4D on Met activation and cell motility has been 
demonstrated  [19] . These results suggest that in vivo, 
HGF and Sema4D might act in a combinatorial manner 
to allow the spatial fine-tuning of GnRH migration.

  Semaphorin 7A 
 Semaphorin 7A (Sema7A) is the only glycophosphati-

dylinositol-linked member of the semaphorin family [re-
viewed in  73 ]. The pleiotropic nature of semaphorins is 
particularly evident for Sema7A, whose roles in immune 
function  [74]  and cancer biology  [75–77]  have been exten-
sively studied. In addition, a few reports have addressed 
its role in neuronal development  [78–82] . A study per-
formed in our laboratory has revealed a role for Sema7A 
and its two receptors, PlexinC1 and β 1 -integrin, in the reg-
ulation of GnRH cell motility  [24] . Sema7A binds to Plex-
inC1 to decrease integrin-mediated cell attachment and 
spreading  [76] , and its interaction with β 1 -integrin induc-
es integrin clustering and the activation of MAPK path-
ways  [80] . We have also shown that Sema7A is highly ex-
pressed in the nasal pit, where GnRH neurons begin their 
migration into the brain, and along the olfactory/vomero-
nasal scaffold during embryonic development in mice 

 [24] . Moreover, the expression pattern of the two Sema7A 
receptors in GnRH neurons appears to be spatiotempo-
rally regulated: at early stages, migrating GnRH neurons 
only express β 1 -integrin, whereas they begin to express 
PlexinC1 during subsequent developmental stages and in 
anatomical areas where these cells stop migrating  [24] . 

  Semaphorin signaling is multifaceted, with subsets of 
these ligands (e.g. Sema4D, Sema6D and Sema7A) elicit-
ing such diverse effects as integrin activation/cell-sub-
strate adhesion, axon outgrowth and cell chemotaxis un-
der distinct conditions  [2] . While the molecular mecha-
nisms underlying these mutually antagonistic activities 
have not yet been fully elucidated, they appear to be me-
diated by distinct signaling pathways that differ depend-
ing on the cell type targeted and the composition of their 
receptor complexes. For example, Sema7A increases di-
rectional migration in immortalized GnRH cells through 
a β 1 -integrin-dependent pathway by stimulating the rap-
id phosphorylation of FAK and ERK1/2 ( fig. 1 c). In con-
trast, the overexpression of PlexinC1 in GnRH neurons 
stops their migration  [24]  ( fig.  1 c). Moreover, in vitro 
also, primary GnRH neurons differentially express β 1 -
integrin and PlexinC1 as a function of migratory stage, 
with PlexinC1 being upregulated in postmigratory neu-
rons  [24] . This switch may be essential for the proper 
guidance of migrating neurons into the hypothalamus. It 
is unknown how PlexinC1 expression is induced in mi-
gratory GnRH neurons. One possibility is that molecular 
cues presented by intermediate targets such as the cribri-
form plate regulate this switch in receptor expression. 

  The relevance of Sema7A signaling in the correct de-
velopment of the GnRH system has been confirmed by in 
vivo studies showing that both the loss of  Sema7A  expres-
sion and the conditional inactivation of β 1 -integrin in 
GnRH neurons impact the development of this system, 
resulting in the significant reduction of the GnRH neuro-
nal population in the brain of adult mice, as well as re-
duced gonadal size and altered fertility  [24, 83] .

  Semaphorin Mutations in Human Hypogonadotropic 

Hypogonadism 

 As mentioned earlier, the abnormal development or 
function of the hypothalamic-pituitary-gonadal axis leads 
to hypogonadotropic hypogonadism in humans, charac-
terized by the absence of GnRH secretion and subfertility 
or infertility. Several disorders affecting this axis are inher-
itable or congenital. Congenital GnRH deficiency, i.e. 
CHH, is characterized by absent or incomplete sexual mat-
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uration and low circulating levels of gonadotropins and 
sex steroid hormones; however, the structure (in imaging 
studies) and function of the pituitary remain normal  [84, 
85] . While in some forms of CHH, the sense of smell re-
mains unaffected (normosmic hypogonadotropic hypo-
gonadism), patients with KS also display anosmia/hypos-
mia. Both types of hypogonadism are marked by anoma-
lies in the embryonic development of the GnRH system, 
which shares a common ontogenic history with the olfac-
tory system ( fig. 3 a). In this respect, the use of animal mod-
els has been tremendously helpful in showing that sema-
phorin signaling is crucial for the migration, survival and 
maturation of GnRH neurons, and that several genes of the 
semaphorin family may be mutated in individuals affected 
by different forms of reproductive insufficiency.

  Mutations affecting several disease-causing genes have 
been shown to be associated with the onset of CHH or KS 
 [86] , and these include Anosmin-1 (or  KAL1 )  [87, 88] , 
 FGFR1   [89] ,  FGF8   [90] ,  FGF17 ,  IL17RD ,  DUSP6 ,  SPRY4 , 
 FLRT3   [91] ,  GNRH1   [92, 93] / GNRHR   [84, 94] ,  KISS1  
 [95] / KISS1R   [96, 97] ,  TAC3/TACR3   [98] ,  NELF   [99] , 
 PROK2 ,  PROKR2   [100, 101] ,  CHD7   [102] ,  HS6ST1   [103] , 
 WDR11   [104] ,  FEZF1   [105] ,  SOX10   [106] ,  SEMA3A   [50, 
107, 108]  and  SEMA7A   [108] . 

  However, these mutations account for only 30–40% of 
CHH/KS patients  [109] . Efforts are therefore ongoing to 
identify other genes that could contribute to this disorder, 
in particular by undertaking the study of genetically mod-
ified mice that reproduce the human KS phenotype. For 
instance, as mentioned above,  Nrp1  sema/sema  mutant mice, 
which lack the semaphorin binding domain in Nrp1,
possess a KS-like phenotype. Concordantly, inadequate 
Sema3A signaling appears to contribute to human KS 
 [50] , with 8 different mutations in the  SEMA3A  gene be-
ing identified in 24 of the 386 KS patients studied (ap-
prox. 6%). Interestingly, these mutations were consistent-
ly observed in the heterozygous state, and 5 patients car-
ried additional heterozygous mutations in other identified 
KS-related genes:  PROKR2 ,  PROK2 ,  KAL1  and  FGFR1  
( fig. 3 b). Three missense changes in  SEMA3A  have also 
been identified recently in 3 probands with KS belonging 
to a Finnish cohort  [108] , of which 2 were identical to 
mutations previously reported by us  [50]  ( fig. 3 b). In the 
same study, these authors also reported two rare hetero-
zygous variants of the  SEMA7A  gene in 1 CHH patient 
with a previously identified  KISS1R  non-sense variant 
and 1 KS patient carrying a mutation in  KAL1   [108] .

  Young et al.  [107]  have reported a large heterozygous 
deletion of 213 kb encompassing 11 of the 17 exons in 
 SEMA3A  in 2 siblings and their clinically affected father 

( fig. 3 b). These authors have proposed that the heterozy-
gous  SEMA3A  deletion might be sufficient to cause KS 
since no additional mutations were detected and the dele-
tion co-segregated within the family with an apparent au-
tosomal dominant transmission of the KS phenotype 
 [107] . On the other hand, in our previous study, we con-
cluded that monoallelic mutations in  SEMA3A  were not 
sufficient to cause the disease phenotype based on the fact 
that all the missense variants detected were previously re-
ported in the EVS database and that some patients also 
carried mutations in other known KS genes  [50] . These 
findings indicate that  SEMA3A  might be a novel contrib-
utory gene in KS, and further substantiate the oligogenic 
pattern of inheritance in this developmental disorder 
 [110, 111] . This hypothesis has been further confirmed in 
a recent study in which nonsynonymous  SEMA3A  varia-
tions have also been identified in CHARGE patients  [112] . 
CHARGE syndrome, thought to be caused by mutations 
in chromodomain helicase DNA binding protein-7 
 (CHD7) , includes eye coloboma, heart malformations, 
atresia of the choanae, retardation of growth/develop-
ment, genital anomalies and ear abnormalities  [113] . 
However, CHARGE patients may present with anosmia 
and/or hypogonadism, features that overlap with CHH 
and KS. Similarly, some CHH/KS patients also display 
certain CHARGE features. It has therefore been hypoth-
esized that KS represents a milder allelic variation of 
CHARGE syndrome, a hypothesis supported by the iden-
tification of heterozygous  CHD7  mutations in CHH/KS 
individuals  [102, 113] . However, as with genes identified 
in CHH/KS, in 5–10% of typical CHARGE patients, no 
 CHD7  mutation has been detected  [114] . Recently, Schulz 
et al.  [112]  have reported nonsynonymous  SEMA3A  vari-
ations in 3 out of 45  CHD7 -negative CHARGE patients 
( fig. 3 b), and have suggested that  CHD7  mutations alone 
are not sufficient to produce the CHARGE phenotype. In-
stead, they propose an important modifier role for 
 SEMA3A  in the pathogenesis of this multiple malforma-
tive syndrome. Indeed, in the same work these authors 
have also undertaken a genome-wide microarray expres-
sion analysis of wild-type and Chd7-deficient ( Chd7  Whi/+  
and  Chd7  Whi/Whi ) mouse embryos at day 9.5, a time point 
important for neural crest cell migration, and have identi-
fied 98 differentially expressed genes between wild-type 
and  Chd7  Whi/Whi  embryos. Many of the misregulated genes 
are involved in neural crest cell migration, guidance and 
ectoderm/neural crest cell interactions, including genes 
such as  Sema3A ,  Sema3C ,  Sema3D  and the Ephrins  [112] .

  Finally, a mutation in another class 3 semaphorin, 
 SEMA3E , has also been reported in an individual with 
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a

b

  Fig. 3.  Semaphorin mutations.  a  Distribution of GnRH-1-immu-
noreactive cells (red dots) in the frontonasal region and forebrain 
of normal human fetuses and in KS fetuses. Curved lines indicate 
the path of the olfactory (yellow lines) and vomeronasal/terminal 
(blue lines [pers. obs.]) nerve fibers. In control fetuses, , GnRH-
1-expressing cells are distributed all along the migratory route 
from the frontonasal regions to the presumptive hypothalamus. In 

KS fetuses, GnRH-1 cells accumulate along the discontinued path 
of olfactory and terminal nerve fibers that do not make contact 
with the forebrain. Few or no neuroendocrine cells reach the pre-
optic/hypothalamic region.  b  Mutations detected in semaphorin 
genes in humans affected by KS and CHARGE syndrome. Muta-
tions in    SEMA3A ,  SEMA3E  and  SEMA7A  have been reported in 
KS and CHARGE patients.                                     

D
ow

nloaded from
 http://w

w
w

.karger.com
/nen/article-pdf/102/3/200/3202890/000431021.pdf by guest on 20 April 2024

http://dx.doi.org/10.1159%2F000431021


 Giacobini

 

Neuroendocrinology 2015;102:200–215
DOI: 10.1159/000431021

208

CHARGE syndrome  [115] , further strengthening the rel-
evance of semaphorin signaling in both neural crest cell 
and axon guidance.

  Semaphorins and Neuroglial Plasticity in the Adult 

Hypothalamic Median Eminence 

 Over the past two decades, it has become clear that 
GnRH terminals of the ME undergo dynamic transfor-
mations as a function of gonadectomy  [116]  as well as of 
fluctuating physiological conditions that influence the 
distance between GnRH terminals and the basal lamina 
 [117] . 

  Remarkably, both GnRH neurons and the multiple 
neuronal networks involved in the control of GnRH se-
cretion are subject to direct modulation by peripheral go-
nadal steroids  [118–121] . During the ovarian cycle, under 
conditions of low gonadotropin output, GnRH-secreting 
axon terminals are distant from the pericapillary space of 
the ME, thus impairing the access of the neurohormone 
to the pituitary portal circulation, but they undergo ex-
tensive axonal growth toward the vascular wall at the on-

set of the preovulatory surge, when massive GnRH release 
has to occur to trigger ovulation  [122] . 

  There is now a growing body of evidence indicating that 
cell-cell interactions involving nonneuronal cells such as 
vascular endothelial cells, astrocytes and specialized epen-
dymoglial cells named tanycytes, which ensheathe the ter-
minals of GnRH neurons, might be of critical importance 
in the regulation of GnRH secretion  [123–126]  ( fig. 4 a). 
Very recently, we have started to shed light on the molecu-
lar mechanisms responsible for this neuroglial plasticity 
and for the progression of the estrous cycle in rodents.

  In the brain, endothelial cells are positioned to sense 
peripheral inputs and ideally suited to convey signals that 
could influence neuronal structure and synaptic plasticity. 
During development, blood vessels and axons employ 
similar mechanisms and follow common guidance cues 
for growth and navigation  [127, 128] . Moreover, blood 
vessels aid axonal trajectories to reach the appropriate 
destinations  [129] . In the developing embryo, endothelial 
cells release chemotropic signals such as Sema3A  [130, 
131]  that regulate neuronal migration and axon guidance. 

  However, whether endothelial cells in the adult brain 
retained the ability to secrete molecules that influence 

  Fig. 4.   a  Schematic representation of the cell types (tanycytes, as-
trocytes and endothelial cells) and neuronal elements (neuroen-
docrine terminals) that reside within the ME of the hypothala-
mus. Reprinted with permission from Prevot et al.                                              [122] .  b ,  c  Rep-
resentative dark-field photomicrographs of a coronal section of 
an adult female rat ME showing  Sema3A  mRNA localized using a 
radioactive probe (bright dots indicating silver grains, top panel). 
Note the presence of  Sema3A  mRNA in the capillary zone of the 
ME (white arrow) and in intrainfundibular capillary loops (ar-
rowhead) containing PV1-immunoreactive fenestrated endothe-
lial cells (right panel, green immunofluorescence), and its relative 
paucity in the parenchyma.  Sema3A  mRNA expression is also 
seen in various nuclei of the mediobasal hypothalamus that lie 
adjacent to the ME but do not contain PV1-immunoreactive 
blood vessels. 3V = Third ventricle. Scale bar = 100 μm.  d  Isola-
tion of PV1-positive cell (PV1-pos) by FACS (schematic diagram 
and dot plot, top) and real-time PCR analysis of PV1, Sema3A, 
estrogen receptor alpha (ERα) and ERβ transcripts.  e–g  Sema3A-
Nrp1 signaling promotes GnRH axonal growth in the ME of the 
adult female rodent brain.  e ,  f  Representative electron micro-
graphs of GnRH-immunoreactive axon terminals (green) from 
diestrous female rat hypothalamic explants containing the ME, 
incubated for 30 min in the presence ( f ) or absence ( e ) of Sema3A. 
 e  Under basal unstimulated conditions, GnRH nerve endings (n, 
arrowhead, green) are distant from the pericapillary space (p.s., 
pink).  f  Sema3A treatment causes GnRH axon terminals to ad-
vance towards the pericapillary space (p.s., pink), from which they 
remain separated by only a few nanometers (arrows). Cap = Pitu-

itary portal blood capillaries. Scale bar = 1 μm.  g  Quantitative 
analysis of the percentage of GnRH nerve terminals located <1 μm 
from the pericapillary space in the external zone of the ME in ex-
plants from diestrous (left panel) and proestrous (right panel) rats 
treated with Sema3A, a Nrp1-neutralizing antibody (Nrp1-Ab) 
and in controls. Illustrations in  b–g  were adapted with permission 
from Giacobini et al.  [132] .  h  Schematic highlighting morpho-
logical changes in GnRH terminals and tanycytic end feet during 
the different phases of the ovulatory cycle. In diestrus, under con-
ditions of low gonadotropin output, GnRH-secreting axon termi-
nals (green) are distant from the pericapillary space and tanycytes 
(yellow) enwrap GnRH nerve endings, thus impairing access of 
the neurohormone to the pituitary portal circulation. During pro-
estrus, GnRH nerve endings sprout toward the basal lamina de-
lineating the pericapillary space, with which they eventually make 
direct contact, while tanycytes retract. Sema7A treatment of rat 
female ME explants at proestrus induces morphological changes 
that mimic the diestrus state.  i  Sema7A infusion in the ME in vivo 
impairs adult reproductive function in rats. Sema7A was infused 
(0.2 μg/μl, 0.5 μl/h for 7 days) by stereotaxic implantation of a 
28-gauge infusion cannula connected to a subcutaneously im-
planted mini-osmotic pump in the ME of cycling female rats. Rep-
resentative estrous cycle profiles showing the disruption of es-
trous cyclicity by the infusion of Sema7A but not of PBS into the 
ME. Infusion was started on day 9 (downward arrow) and ended 
7 days later (upward arrow), when pump contents were exhaust-
ed. Die = Diestrus; Pro = proestrus; Es = estrus. Adapted with 
permission from Parkash et al.  [139] .  

(For figure see next page.)
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neuronal function was still unknown until recently. A 
study from our group has shown that in the adult rodent 
brain, vascular endothelial cells of the ME express and 
release Sema3A ( fig. 4 b–d) and that the amount released 
is regulated by the ovulatory cycle  [132] . In particular, 
this study highlights a new mechanism through which the 
fenestrated endothelial cells of the ME release the 65-kDa 
isoform of Sema3A (p65-Sema3A) with precise timing 
during the ovarian cycle, being maximal during proestrus 
under the influence of circulating estradiol (E 2 ), and that 
Nrp1 is expressed in GnRH axons. Ultrastructural exper-
iments performed in this study have revealed that 
Sema3A-Nrp1 signaling is required for the extension of 
GnRH axon terminals toward the vascular plexus on the 
day of the preovulatory surge ( fig. 4 e–g). The molecular 
pathways that underlie this Sema3A-Nrp1-mediated ac-
tivity are unknown, although they appear to be intrinsic 
to GnRH neurons since Sema3A promotes GnRH neurite 
outgrowth both in tissue explants and in isolated cell cul-
tures  [132] . In addition, the conditional deletion of Nrp1 
in GnRH neurons counteracts Sema3A-induced axonal 
sprouting, while the localized intracerebral infusion of 
Nrp1-neutralizing antibodies in vivo disrupts the ovarian 
cycle, likely by perturbing the pulsatile, coordinated de-
livery of GnRH into the hypothalamo-hypophyseal portal 
system. Because ovarian cycle-regulated GnRH axonal 
elongation in the adult brain is likely to depend on the 
coordinated actions of many extracellular factors, en-
dothelial p65-Sema3A may work in concert with other 
secreted molecules including nitric oxide, TGF-β 1  and 
BDNF, which are particularly enriched in the capillary 
zone of the ME  [133–135]  and may influence axonal plas-
ticity by modulating neuronal expression of or respon-
siveness to semaphorins  [136–138] . 

  These results suggest a model in which vascular endo-
thelial cells are dynamic signaling components that relay 
peripheral information to the brain to control key physi-
ological functions, including the survival of the species. 
Moreover, they raise the intriguing possibility that vascu-
lar semaphorins may play important and unexpected 
roles in the adult neural plasticity underlying several oth-
er key physiological processes such as learning, the stress 
response and the control of energy homeostasis.

  In addition to endothelial cells, ultrastructural studies 
by our group have revealed that under conditions of low 
gonadotropin output, such as in diestrus, tanycytic pro-
cesses ensheathe GnRH nerve terminals in the external 
layer of the ME and prevent them from directly contact-
ing the perivascular space  [117]  ( fig. 4 h). However, the 
molecular cues responsible for these dynamic morpho-

logical changes have not been elucidated so far. We have 
recently demonstrated a novel mechanism for this plas-
ticity in the ME of adult female rodents, where tanycytes 
express Sema7A and this expression varies as a function 
of the hormonal state of the animal during the estrous 
cycle, being maximal at the onset of the diestrous phase 
 [139] . We hypothesize that Sema7A released by hypotha-
lamic tanycytes cyclically induces GnRH neurons to re-
tract their terminals from the pericapillary space through 
PlexinC1 signaling and concomitantly promotes tanycyt-
ic end feet expansion via β 1 -integrin activation, making 
the pericapillary space inaccessible to GnRH nerve termi-
nals ( fig. 4 h,  5 ). This mechanism regulates neuropeptide 
release at key stages of the ovarian cycle, such as at dies-
trus, when GnRH secretion into the portal circulation is 
low. Indeed, when Sema7A is infused into the ME of fe-
male rats via a cannula connected to a subcutaneously 
implanted osmotic minipump for 7 days, there is a dis-
ruption of regular estrous cyclicity ( fig. 4 i). 

  In the same study, we have also shown that on the 1st 
day of diestrus, when progesterone secretion reaches peak 
values  [140, 141]  while estrogen levels are low  [140, 141] , 
progesterone stimulates Sema7A expression and secretion 
in tanycytes. It is tempting to speculate that in mamma-
lian species in which progesterone has been shown to ter-
minate the GnRH/LH surge  [142, 143]  it may arrest GnRH 
release by promoting the Sema7A-mediated engulfment 
of GnRH nerve terminals by tanycytic end feet. 

  This study also highlights how tanycytes are remod-
eled in response to Sema7A-β 1 -integrin signaling and 
further substantiates the idea that the signaling pathways 
and effects of individual guidance molecules vary as a 
function of cellular context. Interestingly, β 1 -integrin de-
letion in adult tanycytes leads to an alteration of the es-
trous cycle with a predominance of estrous stages with 
elevated circulating levels of LH  [139] .

  Altogether, these studies shed light on the molecular 
mechanisms responsible for the progression of the es-
trous cycle in rodents and suggest that this phenomenon 
relies, at least in part, on the antagonistic effects of two 
ME semaphorins whose expression is periodically influ-
enced by circulating sex hormones ( fig. 5 ). Alterations in 
the mechanisms responsible for this estrous cycle-medi-
ated plasticity of tanycytes could thus underlie some 
forms of hypothalamic infertility, independently of 
changes occurring during the developmental period. This 
hypothesis is supported by recent findings that mutations 
in the  SEMA7A  gene can be found in CHH patients  [108]  
and that gonadal steroids promote structural changes in 
the hypothalamus of young women during the menstrual 
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cycle  [144] . Identifying and characterizing such changes 
could thus be of use for the development of new therapeu-
tic strategies for human disorders involving the central 
loss of reproductive competence and, conversely, to de-
sign novel contraceptive methods.

  Conclusion 

 In addition to their effects on cellular morphology in 
a wide variety of systems, the semaphorins and their re-
ceptors play a pivotal role in the structural and function-
al development of the nervous system. In this review, we 
have focused on the intricate involvement of this large 
and diverse family of guidance cues on the development 
and operation of the neuroendocrine system underlying 
fertility. These activities underlie a complex developmen-
tal process, from the migration of neurons that control 
fertility from the nose to their final destination in the 
brain, to the wiring of the neuroendocrine network con-
trolling neurohormone release. The recent finding that 
several patients with infertility linked to a developmental 
failure of the GnRH axis harbor mutations in semaphorin 
genes illustrates the importance of these semaphorins in 

  Fig. 5.  Schematic representation summa-
rizing the expression levels and actions of 
Sema3A and Sema7A on the morphologi-
cal plasticity of GnRH neurons and tany-
cytes during proestrus and diestrus in fe-
male rodents. During proestrus, high levels 
of circulating estradiol increase the expres-
sion and secretion of Sema3A by fenestrat-
ed endothelial cells of the ME. Sema3A 
then binds to its cognate receptor, Nrp1, 
which is expressed by GnRH axon termi-
nals, and induces the extension of GnRH 
nerve endings towards the vascular plexus 
to facilitate GnRH release into the portal 
blood and thus modulate the amplitude of 
the preovulatory LH surge                                                [132] . During 
diestrus, when progesterone secretion 
reaches peak values, while estrogen levels 
are low, progesterone stimulates Sema7A 
expression in tanycytes. Through a bifunc-
tional mechanism of action, Sema7A in-
duces, through β 1 -integrin activation, the 
expansion of tanycytic end feet, which en-
sheathe GnRH nerve terminals, and via 
PlexinC1, the retraction of GnRH nerve 
endings, thus preventing the free diffusion 
of the neurohormone into the pericapillary 
space                                [139] .       

the establishment of reproductive competence. Further-
more, semaphorin expression persists in adulthood, and 
the experimental evidence that these signals regulate the 
neuroglial plasticity responsible for timely and adequate 
GnRH release indicates that they also serve to maintain 
homeostatic set points that enable the survival of indi-
viduals and species. The identification of semaphorins 
and their receptors as modulators of both the develop-
ment and adult functional plasticity of this neuroendo-
crine system provides new avenues for research not only 
from a fundamental mechanistic point of view but also 
from the point of view of human therapeutics.
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