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 Introduction 

 Intrauterine growth restriction (IUGR) is traditionally 
and most commonly defined as a birth weight below the 
10th percentile for gestational age on the appropriate 
population growth curve. IUGR is most commonly 
caused by placental insufficiency, in response to which 
the fetus adapts its circulation to preserve oxygen and nu-
trient supply to the brain (‘brain-sparing’). The altered 
cerebral haemodynamics may persist after birth, which 
would imply a different approach with regard to cerebral 
monitoring and clinical management of IUGR preterm 
neonates than their appropriately grown (AGA) peers. 
This review discusses the cerebral circulatory adaptations 
of IUGR fetuses and appraises the available literature on 
the postnatal consequences of this phenomenon. 

  Brain-Sparing in the Compromised Fetus 

 In the situation of chronic fetal hypoxaemia or nutri-
ent deprivation, the fetus redistributes its cardiac output 
to maximise oxygen and nutrient supply to the brain 
(brain-sparing). The fetal circulation is a parallel circuit 
where the majority of the right ventricular output is 
shunted through the ductus arteriosus to the descending 
aorta, and the left ventricle mainly supplies the upper 
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 Abstract 

 Intrauterine growth restriction (IUGR) is most commonly 
caused by placental insufficiency, in response to which the 
fetus adapts its circulation to preserve oxygen and nutrient 
supply to the brain (‘brain-sparing’). Currently, little is known 
about the postnatal course and consequences of this ante-
natal adaptation of the cerebral circulation. The altered ce-
rebral haemodynamics may persist after birth, which would 
imply a different approach with regard to cerebral monitor-
ing and clinical management of IUGR preterm neonates than 
their appropriately grown peers. Few studies are available 
with regard to this topic, and the small body of evidence 
shows controversy. This review discusses the cerebral circu-
latory adaptations of IUGR fetuses and appraises the avail-
able literature on their postnatal cerebral circulation with 
potential clinical consequences.  © 2015 S. Karger AG, Basel 
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body and the brain. Vasoconstriction of peripheral vas-
cular beds leads to an increase of the right ventricular af-
terload. In the case of placental insufficiency, raised pla-
cental vascular resistance contributes to this increased 
systemic resistance  [1] . On the other hand, vasodilation 
of the cerebral arteries causes a decrease in left ventricular 
afterload. These changes result in a preferential shift of 
the cardiac output in favour of the left ventricle, enhanc-
ing blood supply towards the brain  [2] .

  Regional Rather than Global Redistribution 
 It is now believed that brain-sparing occurs regionally 

rather than globally throughout the brain. Hernandez-
Andrade et al.  [3]  have shown by measuring fractional 
moving blood volume (FMBV) that cerebral blood flow 
(CBF) in IUGR fetuses shows regional changes with pro-
gression of fetal deterioration. They saw an initial increase 
in frontal FMBV, followed by a decrease as fetal condition 
worsened. Basal ganglia FMBV, on the other hand, showed 
a steady and significant increase with fetal deterioration. 
The cerebellum showed a similar trend of FMBV increase 
related to the severity of fetal compromise. An increase in 
cerebellar FMBV may also imply enhanced blood supply 
to the brainstem, as both are fed through the posterior ce-
rebral circulation. The results of their study suggest a hi-
erarchical order in cerebral blood supply in case of chron-
ic hypoxia. At earlier stages, higher cognitive functions of 
the frontal lobes are protected; however, under chronic 
and more threatening circumstances the focus seems to 
shift towards survival, protecting important structures 
such as the basal ganglia and the brainstem  [3] .

  Detection of Brain-Sparing 
 Changes in CBF associated with brain-sparing can be 

detected by Doppler sonography. Cerebral vasodilation 
and thus lowered cerebral vascular resistance lead to in-
creased end-diastolic flow velocity in the cerebral arteries. 
As a result, it is believed that cerebral vasodilation and in-
creased CBF can be detected by a decrease in the pulsatil-
ity index [PI; (peak systolic flow velocity – end-diastolic 
flow velocity)/time averaged flow velocity] or resistance 
index [RI; (peak systolic flow velocity – end-diastolic flow 
velocity)/peak systolic flow velocity] of the cerebral arter-
ies. The middle cerebral artery (MCA) is used as the gold 
standard and a MCA-PI below the 5th percentile is gener-
ally classified as abnormal  [4] . As blood flow redistribu-
tion has been shown to occur in a regional manner  [3] , 
brain-sparing may be present before it can be detected by 
an abnormal MCA-PI  [5] . Several studies have reported 
CBF changes in the anterior cerebral artery to occur more 

frequently and earlier than changes in the MCA  [6–8] . 
This is in line with the theory of hierarchical CBF redistri-
bution: initially protecting higher cognitive functions of 
the frontal lobes which are supplied by the anterior cere-
bral artery, followed by more elementary brain regions 
such as the basal ganglia, which are supplied by the MCA. 

  A number of authors have proposed that the calcula-
tion of the cerebroplacental ratio (CPR) is of additional 
value to diagnose brain-sparing  [9–16] . This ratio be-
tween the MCA and UA-PI or -RI can be decreased, while 
the individual values remain within normal limits. Some 
authors have indicated that the CPR has a higher sensitiv-
ity than the MCA alone to predict perinatal and neonatal 
outcome  [9, 11] . Of these studies, however, many showed 
that fetuses with an abnormal CPR were born more pre-
maturely  [9, 10, 12] , which may have confounded their 
results. 

  Reversal of Compensatory Flow 
 There have been reports of severely compromised 

IUGR fetuses displaying a return of the MCA-PI towards 
normal values  [17–19] . This reversal of compensatory flow 
is thought to be a pre-terminal sign. In fact, in a report by 
Konje et al.  [17] , 4 out of 8 fetuses that showed MCA nor-
malisation were subsequent stillbirths, and the other 4 died 
during the neonatal period. It is not fully understood as to 
why this reversal of compensatory flow occurs, and the 
cause may be multifactorial. It has been proposed that 
chronic hyperperfusion of the fetal brain leads to cerebral 
oedema, compromising CBF  [19] . A decrease in CBF may 
also be a result of fetal cardiac decompensation  [17] . The-
oretically, this could be due to reduced cardiac output  [17] , 
but is more likely to result from venous congestion. In sup-
port of this hypothesis, postmortem cerebral examination 
of an IUGR fetus that succumbed following normalisation 
of CBF revealed not only marked dilatation of the MCA, 
but also periventricular radial congestion  [18] . Periven-
tricular congestion is thought to be of venous origin re-
lated to congestion of the vein of Galen  [20, 21] . Enhanced 
blood flow in the vein of Galen, indicating increased ve-
nous return due to brain-sparing, has been reported in 
IUGR fetuses  [22] . Under normal conditions blood flow 
within this vein does not show pulsations  [23] , but pulsa-
tility has been described in pregnancies complicated by
hypertension and IUGR  [22, 23] . These pulsations are 
thought to result from transmission of pressure waves 
from the venous circulation  [23] , which in turn are be-
lieved to represent fetal heart failure  [24] . In conclusion, 
fetal heart failure may compromise venous cerebral re-
turn, which subsequently may compromise brain-sparing.
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  Potential Consequences of Prolonged Brain-Sparing 

 Brain-sparing is in essence a protective mechanism 
under chronic hypoxaemia; however, prolonged brain-
sparing may lead to an altered structure and function of 
the cerebral vasculature.

  Cerebrovascular Remodelling 
 Signs of vascular remodelling of systemic arteries have 

been found in both human and animal studies of IUGR 
 [25–34] . It is thought that this vascular remodelling pro-
cess is caused by the systemic haemodynamic changes 
seen in IUGR, which alter shear stress and wall tension 
 [35] . It is therefore plausible that similar vascular wall 
changes occur in the cerebral vessels since brain-sparing 
has great impact on the cerebral haemodynamics. In fact, 
increased incidence of stroke has been reported in adults 
born with low birth weight  [36] . Although low birth 
weight is related to other risk factors for stroke such as 
hypertension  [37] , the association between low birth 
weight and stroke was most pronounced for individuals 
with low birth weight and low placental weight in relation 
to head size  [36] . The relative increased head size suggests 
that brain-sparing was present in these individuals and 
may have made them more susceptible to the occurrence 
of stroke  [38] . However, very little research has been con-
ducted in this area. Animal models of pregnant sheep us-
ing high altitude as a means to induce fetal hypoxia have 
demonstrated changes in vascular wall composition and 
contractility  [39] . It has been suggested that these vascular 
adaptations to chronic hypoxia help preserve energy while 
still maintaining basic contractile function  [40] . Although 
remodelling may help preserve energy under detrimental 
intrauterine circumstances, the postnatal implications of 
these adaptations have not been well investigated. In fact, 
a recent study demonstrated compromised structural in-
tegrity and stability of the cerebral microvasculature in 
IUGR lambs, increasing the blood-brain barrier permea-
bility and their risk for cerebral haemorrhages  [41] .

  Loss of Cerebral Vasoreactivity 
 Prolonged brain-sparing and vascular remodelling may 

lead to reduced vascular wall function. Prenatal loss of va-
soreactivity in IUGR has been suggested by a study where 
human IUGR fetuses with brain-sparing were exposed to 
maternal hyperoxygenation. A subset of these fetuses did 
not show the expected rise in cerebral resistance in re-
sponse to the increased oxygen levels. The finding that 
these fetuses did not adjust their cerebral circulation to the 
new situation is suggestive of impaired cerebrovascular 

regulation. These ‘non-responders’ were also found to 
have a higher risk of being delivered for fetal distress and 
the interval between the Doppler examination and deliv-
ery was shorter compared to the ‘responders’, indicating 
that they were more compromised  [42] . Impaired vasore-
activity may also be another explanation as to why loss of 
compensatory brain-sparing – as described previously – 
can eventually occur. The case illustrated by Fignon et al.  
[18]  showed that the cerebral RI and the CPR ceased to 
show normal physiological fluctuations, indicative of the 
loss of vascular reactivity, before the RI and CPR eventu-
ally rose and compensation of flow was reversed. If im-
paired vasoreactivity persists after birth, it can compro-
mise cerebral autoregulation, which is an important mech-
anism to prevent cerebral hypo- and hyperperfusion. 

  Postnatal Cerebral Circulation following

Brain-Sparing 

 Currently, little is known about the postnatal cerebral 
circulation of IUGR neonates. The small body of evidence 
available in the literature indicates that the altered cere-
bral haemodynamics that exist before birth persist post-
natally. Similarly to prenatal Doppler observations, lower 
PI and RI of the MCA and anterior cerebral artery have 
been found up to 4 days postnatal age, indicating persis-
tent dilatation of the cerebral arteries  [43–45] . In agree-
ment with these findings, increased CBF as measured by 
Xenon-133 has also been reported on the first day of life 
 [46] . Moreover, higher regional cerebral oxygen satura-
tion and reduced cerebral oxygen extraction have been 
reported within the first 24 h of birth  [47] . All of these 
cerebral haemodynamic parameters have shown normal-
isation within a few days, indicating that the cerebral cir-
culatory differences are transitory  [44, 46, 47] .

  Several Doppler measurements for CBF velocity (in-
cluding the peak systolic velocity and time-averaged max-
imum velocity) have been used to investigate CBF in 
IUGR, as flow velocity changes of the MCA have been 
shown to correlate well with changes in CBF  [48] . Con-
trasting results, however, have been reported  [45, 49–51] . 
Blood flow velocity is not only influenced by flow volume 
and vessel diameter, but also by other factors such as hae-
matocrit and vessel wall elastic properties  [52] . It is well 
known that neonates who were exposed to chronic hyp-
oxia in utero can present with polycythaemia. Increased 
haematocrit was also reported in some of the studies men-
tioned previously  [46, 47, 49] . Moreover, changes in vessel 
wall composition could potentially occur in IUGR  [39] . 
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These factors, in combination with various types of mea-
surements for blood flow velocity, have most likely con-
founded the results and led to the discrepancies among the 
reports. It is important to note that these factors, espe-
cially the higher blood viscosity and increased oxygen car-
rying capacity, could potentially confound all studies re-
porting on cerebral haemodynamics and oxygenation, 
which makes it difficult to interpret and compare results.

  What Is Protected by Brain-Sparing? 

 Thus far we have referred to brain-sparing as a protec-
tive mechanism. It is important to note that recent research 
has challenged this conventional idea. Several studies in 
both term and preterm populations have demonstrated 
that IUGR subjects with brain-sparing show worse neuro-
developmental and behavioural outcomes than IUGR sub-
jects without signs of brain-sparing and controls  [53–58] . 
Although not all authors have confirmed this association 
 [59–61] , these findings imply that brain-sparing may not 
always protect against neurological damage  [57] . Based on 
these studies it has even been proposed that increased CBF 
reflects advancing stages of brain injury; not a protective 
mechanism against it  [54, 55, 57] . As described previously, 
IUGR may be associated with vascular remodelling and 
reduced vasoreactivity  [18, 39–42] . The increased CBF 
may in part be a direct consequence of disturbed circula-
tory regulation. This theory is supported by the finding 
that CBF remains elevated after birth, whilst the neonate is 
no longer exposed to a hypoxic environment and is no lon-
ger in need of a compensatory increase in CBF  [43–47] . 
Hypothetically, postnatal continuation of increased CBF 
could cause hyperoxia within the fragile brain, which may 
contribute to neurological damage  [62–64] .

  It is of great clinical significance that the nature of the 
brain-sparing phenomenon is further investigated, as 
new perspectives on this topic may have important impli-
cations for obstetric management of IUGR pregnancies.

  Cerebral Autoregulation 

 Autoregulation is the ability of the cerebral vasculature 
to maintain fairly constant CBF despite fluctuations in 
cerebral perfusion pressure which are mainly affected by 
changes in systemic blood pressure  [65, 66] . When sys-
temic blood pressure increases, cerebral arterioles con-
strict to prevent hyperperfusion of the brain. A decrease 
in blood pressure is compensated for by dilation of the 

cerebral vessels to prevent hypoperfusion and ischaemia. 
Autoregulation is thought to partially rely on a myogenic 
reflex, where smooth muscle cells in the arterioles con-
tract or dilate depending on the intravascular pressure 
 [65, 66] . Other factors that influence the regulation of 
CBF include oxygen and carbon dioxide concentrations, 
metabolic demand, and neuronal influences  [65, 66] .

  The ability to autoregulate appears to increase with 
gestational age. It is thought that autoregulation is im-
paired in sick preterm neonates, and it is believed that this 
contributes to the ischaemic and haemorrhagic injury 
frequently observed in this population  [65] . As IUGR fe-
tuses are often delivered preterm, they are theoretically at 
risk of impaired autoregulation. Due to vascular struc-
tural and functional changes, their autoregulation may be 
further compromised and IUGR neonates may thus be 
even less equipped than their AGA peers to cope with 
hypo- and hypertensive circumstances. In contrast, Bauer 
et al.  [67, 68]  found that low-birth-weight piglets exhib-
ited a more adequate autoregulatory response to haemor-
rhagic hypotension and also higher brain oxygen extrac-
tion during hypercapnic hypoxia than their AGA peers. 
These results suggest that chronic intrauterine hypoxia 
may in fact stimulate the maturation of protective mech-
anisms to ensure adequate brain oxygenation and perfu-
sion. In this case, IUGR subjects may actually be able to 
withstand periods of hypoperfusion and hypoxia better 
than their AGA counterparts. It is important to note, 
however, that these piglets were harvested from uncom-
plicated pregnancies. Although asymmetric growth of 
these piglets does suggest that brain-sparing and thus a 
certain degree of intrauterine oxygen deprivation was 
present, the haemodynamic disturbances and hypoxia 
may have been mild.

  Despite its clinical significance, literature on this topic 
is extremely scarce and, to date, no studies have been per-
formed investigating cerebral autoregulation in human 
IUGR neonates.   

  Hypotension and Persistent Ductus Arteriosus 

 Hypotension and a haemodynamically significant per-
sistent ductus arteriosus (HSPDA) are both believed to 
negatively influence CBF in AGA preterm infants  [69, 
70] . As discussed above, besides prematurity, cerebral 
vascular wall changes could reduce vasoreactivity and 
thus limit the autoregulatory response to protect the 
IUGR brain against hypoperfusion under these circum-
stances. Moreover, the autoregulatory response is limited 
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by the maximal dilation of the vessels  [65] . In case of pro-
longed brain-sparing due to chronic hypoxaemia, maxi-
mal vessel dilatation may have already been reached, 
which would further limit the protective response to hy-
potension and HSPDA. Additionally, systemic vasocon-
striction related to blood flow redistribution might still be 
in place, compromising the vasoconstrictor response to 
increase peripheral resistance in an attempt to raise blood 
pressure. Furthermore, cardiac dysfunction has been re-
ported in IUGR neonates, which may also limit compen-
satory responses  [32, 71] . For example, IUGR neonates 
can present with diastolic dysfunction, restricting ven-
tricular filling  [32, 71] . The tachycardiac response to hy-
potension would not be successful under these circum-
stances, as the increased heart rate would allow even less 
time for already diminished ventricular filling, further 
compromising cardiac output  [72] .

  In contrast, animal work by Bauer et al.  [67, 68]  has 
suggested that exposure to chronic (mild) intrauterine 
hypoxia may actually improve autoregulation and cere-
bral oxygen extraction, allowing the IUGR brain to better 
withstand the effects of hypotension and HSPDA .  It could 
also be argued that postnatal persistence of increased CBF 
may reduce the impact of systemic hypotension or ductal 
steal on the cerebral circulation. However, as postnatally 
increased CBF appears to be a temporary phenomenon 
only lasting a few days, and vascular functional and struc-
tural abnormalities may persist, protection against cere-
bral hypoperfusion may not be guaranteed beyond this 
period. Despite its clinical importance, we have little un-
derstanding of the impact of presumed hypotension and 
HSPDA on the postnatal haemodynamics of IUGR redis-
tributing neonates. It is of major clinical importance that 
these topics are addressed in future studies, as results may 
have a significant impact on neonatal management, espe-
cially since HSPDA appears to occur more frequently and 
at an earlier time point in IUGR neonates compared to 
their AGA peers  [73]  and the HSPDA diameter has also 
been found to be larger in IUGR neonates  [73] . It is un-
clear why the occurrence and size of HSPDA is increased 
in IUGR, but it may be related to vascular wall changes 
which have been observed on histology of the ductus ar-
teriosus in this population  [74] .

  Intracranial Haemorrhage 

 Intracranial haemorrhage (ICH) is a common compli-
cation related to prematurity. A study by Alderliesten et 
al.  [75]  has shown that preterm neonates who develop 

severe peri-intraventricular haemorrhage show signs of 
cerebral hyperperfusion and suboptimal cerebral auto-
regulation. Thus, postnatal continuation of increased 
CBF  [46, 47]  in combination with potential loss of cere-
bral autoregulation  [18, 65]  and increased blood-brain 
barrier permeability  [41]  could make the preterm IUGR 
brain especially vulnerable to haemorrhagic insults. In 
fact, a sheep model of IUGR demonstrated highly re-
duced perivascular astrocytes and pericyte coverage of 
the microvasculature in several brain regions, including 
the germinal matrix  [41] . These histologic changes are 
believed to result in decreased stability of the cerebral mi-
crovasculature and are linked to ICH  [41, 76] . Moreover, 
IUGR neonates appear to have higher blood pressures 
compared to their AGA peers  [32, 33, 71] , theoretically 
further contributing to ICH risk. 

  Two recent studies have demonstrated a positive as-
sociation between prenatal signs of brain-sparing and 
ICH  [77, 78] . In their large prospective study of 90 IUGR 
subjects, Cruz-Martinez et al.  [77]  found that IUGR neo-
nates with an abnormal prenatal MCA-PI presented with 
ICH significantly more often than their non-brain-spar-
ing counterparts and controls. In the study by Ertan et al. 
 [78] , although prenatal Doppler data were available for 
only a subgroup of neonates, the MCA-RI appeared to be 
lower in their ICH group. Contrastingly, others failed to 
demonstrate an association between brain-sparing and 
ICH. Although gestational age differences may have con-
founded the results of several studies reporting on this 
topic  [79–81] , two studies in which gestational age was 
accounted for found no correlation between brain-spar-
ing and ICH  [82, 83] . According to these studies, brain-
sparing does not increase the risk of haemorrhagic brain 
lesions. One study even found a reduced risk of ICH when 
the MCA-PI was decreased  [84] . Some authors have 
therefore proposed that the adaptations to chronic in ute-
ro hypoxia may have accelerated maturation of autoregu-
latory mechanisms, thus protecting against ICH  [85] . 

  The underlying pathology to ICH appears to be com-
plex and multifactorial, but it has been proposed that ICH 
occurs after a period of cerebral hypoperfusion with sub-
sequent reperfusion  [86, 87] . Hypothetically, increased 
cardiac output and brain-sparing in IUGR may prevent 
cerebral hypoperfusion and protect the IUGR neonate 
against ICH. As discussed previously, however, ‘brain-
sparing’ may not be a (fully) protective mechanism. Hae-
modynamic instability and vascular remodelling may oc-
cur with long-standing or severe IUGR, which could im-
pose a risk on the fragile preterm IUGR brain. Contrasting 
results from the studies mentioned previously may thus 
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not only be explained by technical differences (various 
definitions, methods and timing to detect brain-sparing 
and ICH) or confounders (gestational age, influence of 
clinical management), but may also rely on the severity of 
IUGR and fetal compromise. 

  In conclusion, the current literature shows conflicting 
results and cannot exclude negative consequences of brain-
sparing on the fragile cerebral vasculature. It is of great 
clinical importance that this topic is explored further.

  Cerebral Oxygenation to Guide Clinical Management 

 Although hypo- and hypertension are thought to be 
harmful for the preterm brain, the actual blood pressure 
range that ensures adequate brain perfusion is unknown 
 [70] . Also, the absolute blood pressure values may not cor-
relate with cerebral perfusion  [88, 89] . Interestingly, cere-
bral oxygenation has been shown to predict neurode-
velopmental outcome better than the presence of hypo-
tension defined by absolute blood pressure values  [90] . 
Moreover, fluctuations of cerebral oxygenation and oxy-
gen extraction have been related to the occurrence of ICH 
 [75, 87]  .  It has therefore been proposed to consider mea-
surements of cerebral perfusion rather than absolute 
blood pressure values as a basis for neonatal management 
 [88, 90] . Cerebral oxygenation indices as obtained with 
near-infrared spectroscopy have been proposed as a useful 
tool for routine clinical monitoring  [90] . As IUGR neo-
nates show different cerebral haemodynamics than AGA 

peers, they form a separate group within the premature 
NICU population. They will require a different approach 
with regard to the interpretation of cerebral oxygenation 
measurements and may need their own reference curves. 

  Conclusion 

 Chronic intrauterine hypoxia and prenatal haemody-
namic disturbances appear to cause structural and func-
tional changes in the cerebral circulation. These intra-
uterine adaptations appear to persist postnatally, and the 
cerebral circulation of IUGR neonates is thus different 
from their AGA peers during at least the first few days of 
life. However, the literature on this topic is extremely 
scarce and the existing literature shows many controver-
sies. Therefore, the clinical consequences of these altered 
cerebral haemodynamics are poorly understood. It is thus 
challenging to predict which fetuses are at greatest risk of 
adverse outcomes, and we currently have little under-
standing regarding the most appropriate cerebral moni-
toring and management strategies for IUGR fetuses and 
neonates. An international initiative addressing these is-
sues would be of great importance to improve the care for 
especially the preterm IUGR population.
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