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clinical value and as research domain criteria, before giving 
an outline for future studies that are needed to pave the way 
to an electrophysiological biomarker-based personalized 
medicine.  © 2016 S. Karger AG, Basel 

 Introduction – Genetics, Endophenotypes and 

Biomarkers 

 In some fields of medicine, individualized and person-
alized treatment has become state of the art. Especially in 
oncology, the assessment of individual biological proper-
ties of the patient and the cancer cells helped to make 
treatment more efficient, reduce side effects and improve 
secondary prevention strategies  [1] . The paradigm shift 
from standard ‘one-size-fits-all’ treatment plans accord-
ing to descriptive markers such as stage and locus of the 
cancer to individual therapy algorithms based on e.g. ge-
netic markers is thought to be of value also for neuropsy-
chiatric disorders and raises new hopes for tailored ther-
apies in psychiatry. However, a mental disorder is com-
pletely different from a well-observable and definable 
solid tumour: there is no clear organic correlate that is 
responsible for the symptoms; instead, multidimensional 
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 Abstract 

 Personalized medicine in psychiatry is in need of biomarkers 
that resemble central nervous system function at the level of 
neuronal activity. Electroencephalography (EEG) during 
sleep or resting-state conditions and event-related poten-
tials (ERPs) have not only been used to discriminate patients 
from healthy subjects, but also for the prediction of treat-
ment outcome in various psychiatric diseases, yielding infor-
mation about tailored therapy approaches for an individual. 
This review focuses on baseline EEG markers for two psychi-
atric conditions, namely major depressive disorder and at-
tention deficit hyperactivity disorder. It covers potential bio-
markers from EEG sleep research and vigilance regulation, 
paroxysmal EEG patterns and epileptiform discharges, quan-
titative EEG features within the EEG main frequency bands, 
connectivity markers and ERP components that might help 
to identify favourable treatment outcome. Further, the vari-
ous markers are discussed in the context of their potential 
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and possibly very heterogeneous alterations of brain 
function sum up to the clinical syndrome.

  Although psychiatric disorders such as major depres-
sive disorder (MDD) have an assumed high heritability of 
up to 37%  [2] , large-scale genome-wide association stud-
ies have thus far failed to link genetic variants with MDD 
 [3] . This underpins the suggested polygenetic nature of 
psychiatric disorders  [4]  and implies the need for endo-
phenotypes that are seen as an intermediate step between 
genotype and behaviour. Endophenotypes are more 
closely related to genotype than behaviour alone and may 
be a possible way to stratify a population for genome-
wide association studies  [5] . Although some promising 
findings using different sets of clinical and neuroimaging 
endophenotypes in major depression have been reported 
 [6] , a recent study on psychophysiological endopheno-
types can be seen as a drawback to this approach since the 
authors were unable to replicate significant associations 
between endophenotypes and candidate genes  [7] .

  Given that the link between endophenotypes and ge-
netics might not be that strong or simple as suggested, an 
association between endophenotypes and disorder might 
still be present and could help to improve treatment and 
diagnostic decisions. In this context the term ‘biomarker’ 
seems relevant, that is according to the National Institutes 
of Health ‘a characteristic that is objectively measured 
and evaluated as an indicator of normal biologic process-
es, pathogenic processes or pharmacologic responses to a 
therapeutic intervention’  [8] . The value of a personalized 
medicine approach is not determined by the association 
of a marker with genetic variants but by the improvement 
it yields for the diagnostic process (by making it more ob-
jective) and, probably more importantly, by the increased 
effectiveness of the treatment (i.e. a more prognostic bio-
marker). As Thomas Insel, director of the National Insti-
tute of Mental Health, stated: ‘The task is to identify the 
biomarker that predicts response – whether the treatment 
is a medication or a psychosocial intervention.’ The first 
step towards this ‘precision medicine’ development was 
the introduction of the Research Domain Criteria project 
which is aimed to transform clinical syndrome-based di-
agnosis into an individualized framework of psychophys-
iology to support the diagnostic process of mental disor-
ders  [9]  and – hopefully – improve treatment. Currently 
several large-scale studies are ongoing that should be able 
to shed more light onto this development, such as the in-
ternational Study to Predict Optimized Treatment Re-
sponse (iSPOT) in 2,016 patients with MDD and 672 chil-
dren and adolescents with attention deficit hyperactivity 
disorder (ADHD; see also Williams et al.  [10]  for further 

protocol details) and the EMBARC study (Establishing 
Moderators and Biosignatures of Antidepressant Re-
sponse for Clinical Care for Depression; https://clinical-
trials.gov/ct2/show/NCT01407094).

  Electroencephalogram and Biomarkers 

 Sparked by the discovery that the mode of function of 
the human central nervous system is based on electric ac-
tivity  [11, 12] , the invention of electroencephalography 
(EEG) and its first description in humans  [13]  provided the 
possibility to analyse the brain at its core functional level. 
Taken as a tool for the assessment of biomarkers that, ac-
cording to the definition, should be assessable objectively 
and provide information about physiological or pathologi-
cal processes or responses to treatment interventions  [14] , 
EEG also fulfils the criteria of a cost-efficient, nowadays 
broadly available and already established tool in the diag-
nostic clinical practice. Further, EEG captures ongoing 
neuronal activity with a temporal resolution that surpasses 
any other neuroimaging modality such as functional mag-
netic resonance imaging or positron emission tomography. 
Also, the electroencephalogram is not a surrogate marker 
of neuronal activity (such as the blood deoxygenation level-
dependent signal in functional magnetic resonance imag-
ing or the glucose utilization in positron emission tomog-
raphy; see Logothetis  [15] ) but is a direct reflection of neu-
ronal activity (postsynaptic potentials)  [16] . It is therefore 
highly plausible that a personalized medicine approach in 
psychiatry could gain from electrophysiological markers.

  Although electrophysiological biomarkers have been 
studied throughout many psychiatric disorders, the cur-
rent review is dedicated to only two of them: MDD and 
the ADHD. The following work describes the current 
state of the art of baseline EEG parameters by means of 
their diagnostic and predictive (prognostic) value. Treat-
ment-emergent biomarkers that yield information about 
changes in the early course of treatment will not be sub-
ject of the review, and the interested reader is referred to 
Olbrich and Arns  [17]  or Arns and Olbrich  [18]  for more 
coverage of those.

  Biomarkers 

 EEG Sleep Research 
 EEG biomarkers in sleep are robust, and their advan-

tage can be found in the link between clinical symptoms 
such as sleep initiation problems, early awakening or dis-
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rupted sleep in both MDD and ADHD and electrophysi-
ologically assessable parameters. In MDD, the most con-
sistently reported findings include a disturbed sleep ar-
chitecture, comprising an increased rapid eye movement 
density  [19, 20] , decreased rapid eye movement sleep la-
tency  [21, 22]  and altered slow-wave sleep in MDD  [23, 
24] .

  While slow-wave power seems to have a discrimina-
tive value between MDD and healthy controls (HCs)  [23, 
25] , a predictive value for recurrence of depressive symp-
toms was found for decreased slow-wave sleep, decreased 
sleep efficiency and delayed sleep onset  [26–28] . Also the 
slow-wave activity itself seems to be important for treat-
ment prediction. Luthringer et al.  [29]  reported increased 
relative delta power in sleep EEG recordings in respond-
ers to antidepressant treatment, although others failed to 
replicate these findings  [30, 31] . Still, Nissen et al.  [31]  
reported decreased slow-wave activity in responders, ex-
pressed in a high delta sleep ratio, a finding that again 
could not be replicated by Argyropoulos et al.  [32] . Be-
sides classical sleep EEG parameters, also a decreased co-
herence within the beta, delta and theta bands in sleep 
EEG predicted non-response in adolescents and the oc-
currence of depressive episodes  [33] .

  In ADHD there is a clear lack of studies that examine 
EEG-derived sleep parameters, although other measures 
such as actigraphy and salivary melatonin measurements 
suggest a delayed sleep onset in a majority of children and 
adults with ADHD, also termed sleep onset insomnia 
 [34–36]  characterized by a delayed melatonin onset. This 
delayed sleep onset results in reduced sleep duration – 
and thus chronic sleep restriction – in ADHD, which be-
comes visible as the typical drowsiness patterns that can 
be observed in the EEG such as impaired vigilance (see 
EEG Vigilance below) or excess theta waves (see Fre-
quency-Specific Biomarkers: Theta); for a review, see also 
Arns et al.  [36]  and Arns and Kenemans  [37] .

  EEG Vigilance 
 Another possible EEG biomarker that has proven its 

value for differentiating between patients suffering from 
MDD and HCs is EEG vigilance regulation. Hegerl et al. 
 [38]  and Olbrich et al.  [39]  reported that MDD is associ-
ated with an increased EEG vigilance during rest with 
fewer and slower declines to lower vigilance stages during 
a 15-min resting condition. The appeal of this marker re-
flecting a high tone of CNS arousal can be found in the 
linkage between clinical symptoms and EEG parameters 
of wakefulness regulation. A hyperstable vigilance regula-
tion in MDD is interpreted as an electrophysiological cor-

relate of the often reported sleep problems. Increased vig-
ilance might further explain the behavioural withdrawal 
of patients suffering from MDD to avoid a further in-
crease in arousal  [40] .

  The EEG vigilance framework further suggests that a 
fast decline of EEG vigilance during rest might result in 
increased sensation seeking and hyperactive behaviour to 
stabilize wakefulness regulation. Hegerl and Hensch  [40]  
suppose that not only manic patients  [41]  reveal unstable 
EEG vigilance regulation patterns, but also patients suf-
fering from ADHD  [37, 42] . In line with this, increased 
theta power as a marker of drowsiness has frequently 
been reported in patients with ADHD  [43] , and as de-
scribed above the majority of patients with ADHD ex-
hibit sleep onset insomnia  [34, 35, 37] , further supporting 
this notion. However, a recent meta-analysis also suggest-
ed increasing levels of theta power for healthy children 
and stable levels for ADHD children across the last 10 
years  [44] , suggesting a possible gene × environment 
(sleep, circadian clock) interaction for this measure re-
quiring further research.

  Paroxysmal Patterns and Epileptic Discharges 
 Unlike in neurology, there are no distinct ‘grapho-el-

ements’ in EEG recordings that are pathognomonic for a 
psychiatric syndrome. However, already in 1939 was it 
demonstrated that during subclinical epileptiform activ-
ity patients had slower reaction times, while others did 
not respond at all  [45] , suggesting that paroxysmal activ-
ity in ‘non-epileptic patients’ can have behavioural con-
sequences.

  The occurrence of paroxysmal EEG in affective disor-
ders has not been investigated in much detail, but previ-
ous analyses suggest a prevalence of 3–5% in depression 
 [46]  to 20–40% in affective disorders, mostly mania  [47] . 
The 3–5% in depression are comparable to the 1–6% 
prevalence of paroxysmal EEG in normal populations 
 [47–50] . On the other hand, the occurrence of paroxys-
mal patterns in ADHD has been estimated to be between 
12 and 15%  [51–53]  to approximately 30%  [54] , which is 
relatively high, compared to normal populations. A more 
recent study found epileptiform discharges in 25% of 
children with suspected ADHD  [55] .

  The implications for treatment in psychiatric patients 
with paroxysmal patterns or epileptiform discharges – 
but without a history of seizures – remain unclear. It is 
still remarkable that several studies found that ADHD pa-
tients  [56–58]  do respond to anticonvulsant medication, 
e.g. to carbamazepine  [59] . Furthermore, there is some 
evidence that antidepressant treatment augmentation 
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with anti-epileptic drugs is effective in treatment resistant 
MDD  [60, 61] , although data about the association of re-
sponse and epileptiform discharges are lacking. As a fur-
ther example, previous studies have demonstrated an as-
sociation between paroxysmal EEG activity and panic at-
tacks [for a review, see 62, 63]. Patients with panic 
disorder and epileptiform EEG patterns have been found 
to clinically respond to anticonvulsants  [64] , thus sug-
gesting that there could be a subgroup of psychiatric pa-
tients in whom paroxysmal/epileptiform EEG activity 
could be associated with their psychiatric complaints and 
for whom anticonvulsant treatment could be a choice for 
augmentation of treatment or as stand-alone treatment. 
However, this requires further controlled research.

  Frequency-Specific Biomarkers: Alpha 
 One of the most prominent features of a resting-state 

EEG is the EEG alpha activity with heritability estimates 
of up to 79%  [65] . Alpha activity in adults has a mean fre-
quency around 10 Hz with a range between 7 and 13 Hz 
and has maximum amplitudes at parieto-occipital loca-
tions in the eyes-closed condition.

  In MDD a consistent finding is an elevated absolute 
 [66–70]  or relative alpha power  [71, 72]  at mainly parietal 
and frontal  [68, 73]  or occipital sites  [74] . The reason that 
some studies did not find alpha power differences be-
tween patients and HCs  [75, 76]  or found decreased (rel-
ative) alpha activity in comparison to other patient groups 
 [77]  might be related to differences of recording periods, 
where shorter recording periods prevent the differences 
described above  [38, 39]  in vigilance regulation to occur 
(e.g. 6 min in Knott and Lapierre  [76]  vs. 15 min in Hegerl 
et al.  [38]  and Olbrich et al.  [39] ).

  In addition, there is some evidence that EEG alpha 
power can predict treatment outcome with low parieto-
occipital  [74, 78, 79]  or lowered frontal alpha power  [80]  
associated with non-response to antidepressants, al-
though this could not be replicated in the recent multi-
centre iSPOT-D (for depression) study in 1,008 MDD pa-
tients  [81] . However, for treatment with repetitive trans-
cranial magnetic stimulation (rTMS), the opposite was 
reported  [79, 80] , maybe related to higher levels of treat-
ment resistance in these rTMS studies.

  EEG alpha asymmetry has been investigated as a bio-
marker for MDD with a decreased alpha power at right 
frontal sites relative to the left side  [82–86] , although 
many studies have failed to replicate these findings  [81, 
87–91] . Interestingly in ADHD, Keune et al.  [92]  found 
the opposite pattern of alpha asymmetry with increased 
right frontal alpha power.

  Two studies by the same group investigated the prog-
nostic value of alpha asymmetry in MDD and found con-
flicting results  [74, 93] ; however, in the iSPOT-D study it 
was found that frontal alpha asymmetry (right frontal al-
pha dominance) was specifically related to response to the 
selective serotonin reuptake inhibitors escitalopram and 
sertraline, but not to the serotonin norepinephrine reup-
take inhibitor venlafaxine in females only  [81] , under-
scoring the importance of large samples that allow testing 
for gender- and drug class-specific predictors of treat-
ment outcome.

  A slow background rhythm, also called a slow alpha 
peak frequency, has been consistently found a predictor 
for non-response to several treatments such as stimulant 
medication in ADHD  [94] , rTMS in depression  [95, 96]  
and the antidepressants pirlindol and amitriptyline  [79] ; 
for a review, see Arns  [97] .

  Frequency-Specific Biomarkers: Theta 
 Several studies have reported elevated slow-wave ac-

tivity in MDD  [69, 98–101] , with the focus of this elevat-
ed theta activity localized to frontal areas and often to the 
anterior cingulate cortex (ACC)  [68, 101, 102] , though 
decreased ACC activity in MDD has also been reported 
 [103]  and some studies found no differences between 
MDD and controls  [104, 105] .

  High frontal theta activity has been associated with 
non-response to antidepressant treatments  [96, 106, 107]  
while Cook et al.  [108]  found no differences. Seemingly 
contrary to this, Spronk et al.  [109]  reported that low the-
ta activity at the frontal midline was associated with non-
response. Note that several authors  [96, 106, 107]  report-
ed on widespread frontal (not midline) theta activity, 
most likely a reflection of ‘drowsiness’ theta power as dis-
cussed above (see EEG Vigilance) on vigilance  [37] , 
whereas Spronk and colleagues found the opposite pat-
tern for frontal midline theta activity. This suggests these 
two types of theta activity could have different implica-
tions and different origins. In line with Spronk et al.  [109] , 
several studies have indeed shown low theta activity local-
ized to the ACC, as estimated by source localization tech-
niques, to respond worse to various antidepressant treat-
ments  [110–113] . These findings are in line with positron 
emission tomography and functional magnetic resonance 
imaging studies demonstrating low metabolic activity in 
the ACC is associated with worse treatment outcome; see 
also Pizzagalli  [114]  for an excellent review and meta-
analysis on the rostral ACC (rACC) and treatment out-
come. Contrary to this notion, several groups have re-
ported high perfusion in the subcallosal cingulate (SCC; 
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in earlier work this area was also referred to as rACC) 
 [115]  or rACC for non-responders  [116, 117] , also re-
viewed in Arns et al.  [101] . In line with this, recent results 
of the iSPOT-D study reported increased rACC and fron-
tal theta activity to be associated with non-response, al-
beit with a small effect size  [101] . Interestingly, these re-
sults tended to be driven mostly by treatment resistance, 
suggesting that future studies should also investigate the 
role of treatment resistance for the association of rACC/
SCC perfusion and treatment outcome  [101] . Conversely, 
deep-brain stimulation targeting the SCC in treatment- 
resistant MDD patients has been shown to result in clini-
cal benefits  [118] , positing this area as a critical node in 
the depression network. However, the exact direction of 
these findings (high or low frontal midline theta activity) 
and exact localization (rACC vs. SCC) remains unclear 
from these lines of research, and future studies might shift 
the focus on investigating the connectivity of this specific 
area with other structures rather than focusing solely on 
EEG theta power given the above contradictory findings.

  In ADHD, excess theta activity compared to controls 
is an often-reported finding, sometimes also expressed in 
the theta/beta ratio (TBR)  [43] , and several reports have 
termed the TBR a solid biomarker to identify ADHD. 
These findings resulted in this measure being FDA ap-
proved as a ‘diagnostic test’ for ADHD [for a commen-
tary, see 119]. However, a recent meta-analysis could not 
confirm that this metric is a reliable ‘diagnostic test’ for 
ADHD  [41] , due to an increased TBR across the last 10 
years for controls, suggesting that this marker is a non-
specific marker for drowsiness, and insufficient as a diag-
nostic biomarker for ADHD. Apart from the diagnostic 
use, this metric does hold potential as a prognostic bio-
marker being able to predict treatment outcome. A sub-
stantial proportion (26–38%) of ADHD subjects did have 
a high TBR and excess theta activity, and these subgroups 
have been found to be responders to stimulant medica-
tion  [80, 94, 120]  and neurofeedback  [96, 121] , making 
this measure more likely a prognostic than diagnostic 
measure  [119] , albeit still requiring further replication.

  Frequency-Specific Biomarkers: Beta 
 In MDD there is some evidence for increased beta EEG 

activity  [99, 122] . The predictive value for treatment out-
come has not been investigated systematically so far.

  In ADHD there is evidence for a subgroup of ADHD 
patients who are characterized by excess beta activity or 
beta spindles that make up 13–20%  [123–125] . Several 
studies demonstrated that this subgroup does respond to 
stimulant medication  [126–128] . A recent study further 

demonstrated that spindling excessive beta activity is a 
result of sleep maintenance problems and thus can indeed 
be considered a ‘subvigil’ beta state and is specifically as-
sociated with impulse control problems, irrespective of 
diagnosis  [129] . This would make the effectiveness of 
wakefulness-promoting drugs plausible in these patients.

  EEG Connectivity Measures 
 First reports of altered connectivity in MDD in con-

trast to HCs stem from findings of altered coherence be-
tween EEG electrode sites  [130, 131] . More recent studies 
used a huge variety of connectivity measures like partial 
directed coherence, Granger causality, structural syn-
chrony index and phase synchrony index. Some found 
decreased EEG connectivity in MDD  [122, 132–134]  
while others report of increased EEG connectivity in 
MDD, mainly in the alpha band  [135–138] . More studies 
are needed to disentangle the complex relationship be-
tween the different connectivity measures and their phys-
iological interpretation and to estimate the value for 
treatment prediction. In this context, one study  [138]  
found an association between increased phase connectiv-
ity in the beta band between the subgenual prefrontal cor-
tex and the right medial frontal cortex and treatment re-
sponse. As suggested above in relation to theta activity, 
these approaches, when replicated, could further shed 
light onto the controversy between increased or decreased 
metabolism in the rACC/SCC.

  Also in ADHD there is increasing evidence that EEG-
based measures of connectivity could be used to differen-
tiate between patients and HCs. Interestingly, most stud-
ies find increased measures of coherence especially with-
in the beta and theta bands during the resting state 
 [139–141] . Also graph theory network parameters seem 
to support an increased functional connectivity in ADHD 
 [142] . Regarding a possible predictive value of connectiv-
ity measures, Dupuy et al.  [143]  describe an association 
between intrahemispheric coherence in the beta band 
and response to methylphenidate. These findings are 
promising and possibly pave the way for an improved dif-
ferential diagnosis and consecutive treatment.

  Event-Related Potentials 
 The event-related potential (ERP) is a waveform of av-

eraged EEG activity, time-locked to a stimulus in a cogni-
tive task. Several components of this ERP have been stud-
ied for their predictive value in treatment outcome.

  In MDD research, the main focus has been on two 
measures, namely the P3  [144]  and the loudness depen-
dence auditory evoked potential (LDAEP), which is a de-

D
ow

nloaded from
 http://w

w
w

.karger.com
/nps/article-pdf/72/3-4/229/3259631/000437435.pdf by guest on 17 April 2024

http://dx.doi.org/10.1159%2F000437435


 Olbrich/van Dinteren/Arns

 

 Neuropsychobiology 2015;72:229–240 
DOI: 10.1159/000437435

234

rivative of the N1/P2 amplitude and its changes with in-
creasing stimulus intensity  [145] . So far, research involv-
ing the P3 has been ambiguous. Jaworska et al.  [146]  
found that responders to antidepressants have larger P3 
amplitudes than non-responders. A similar finding was 
reported by Bruder et al.  [147]  for the P3 amplitude at oc-
cipital sites. In contrast, responders to treatment with 
rTMS were found to have lower P3 amplitudes than non-
responders, although this effect was limited to Pz and 
only marginally significant  [96] . Regarding P3 latency, 
the results have been mixed as well, where some found no 
effect  [146] , while other studies found slower P3s in non-
responders  [148–150] .

  The LDAEP has proven to be a more robust predictor 
for antidepressant treatment response. A strong LDAEP, 
i.e. a steeper increase with stimulus intensity, is suppos-
edly indicative of a low level of serotonergic activity  [145, 
151]  and is related to better outcome compared to a selec-
tive serotonin reuptake inhibitor  [152] , whereas the effect 
is reversed for responders to noradrenergic antidepres-
sants  [111, 153, 154] . A recent study, however, failed to 
replicate this relation between LDAEP and treatment 
outcome, even though a relation between treatment re-
sponse and current source densities of the N1 LDAEP was 
obtained  [155] . Related to this measure, Spronk et al.  
[109]  found that a larger (more negative) N1 amplitude 
was related to a larger reduction of depressive symptoms 
after treatment with antidepressants.

  In ADHD, ERP components have also been investi-
gated as predictors for treatment response to stimulants. 
Sangal and colleagues found the topography of the P3, 
specifically the right frontocentral to parietal amplitude 
ratio, to be predictive of response to various stimulants, 
i.e. methylphenidate  [156] , atomoxetine  [157]  and pemo-
line  [158] . They also reported a study in which poor re-
sponders to pemoline were treated with the antidepres-
sant imipramine. Within this subgroup, poor responders 
to imipramine demonstrated slower P3 latencies  [159] . 
Sunohara et al.  [160]  could not replicate ERP P3 and N2 
latencies as baseline predictors for treatment outcome in 
ADHD children but found some treatment-emergent ef-
fects which are in agreement with Winsberg et al.  [161] .

  Conclusion 

 Sleep EEG parameters have been found to be of dis-
criminative and predictive value, especially in MDD. A 
widespread clinical use might be dampened due to the 
relatively large subject burden, e.g. one night at a sleep 

laboratory or even two to rule out first-night effects from 
findings  [162] . In ADHD, there is a lack of studies that 
analyse EEG sleep parameters, although an association of 
the disorder with the sleep-wake cycle and especially cir-
cadian alterations is evident.

  EEG vigilance measures seem to provide a less cost- 
and effort-intensive approach to assessing wakefulness 
regulation during rest in contrast to polysomnography. 
Another advantage of EEG vigilance-based markers can 
be found in its association with clinical features of MDD 
and ADHD as outlined above. A biomarker that has a di-
rect link to the behavioural level is more likely to be ac-
cepted in clinical routine. Still, there is a clear lack of con-
trolled studies that demonstrate the discriminative value 
of EEG vigilance parameters for response or non-re-
sponse in MDD and in ADHD.

  For patterns of paroxysmal or epileptiform activity, it 
remains unclear if treatment or augmentation with anti-
epileptic drugs such as valproate, or some specific antide-
pressants, increase response rates in these MDD or 
ADHD subgroups. Some evidence exists that non-re-
sponders to first-line treatment may benefit. Studies that 
analyse the treatment of MDD or ADHD with anti-epi-
leptic drugs should report on subgroups based on the oc-
currence of pathological but subclinical EEG patterns in 
the future.

  Several quantitative EEG markers, especially within 
the alpha and theta range, revealed a discriminative value 
regarding treatment outcome. However, findings in this 
field are often contrary to what might be explainable by 
the variance of studied patient groups (treatment resis-
tant or not) and at last not by the different treatment ap-
proaches that have been studied. Further, methodological 
and interpretation aspects need to be clarified as it is the 
case with the difference between diffuse frontal theta ver-
sus frontal-midline theta activity in MDD. Based on the 
existing findings, quantitative EEG measures of the alpha 
activity, alpha asymmetry and theta frequencies deserve 
to be in the main focus in future studies of treatment pre-
diction.

  EEG connectivity analysis has seen a revival within the 
past few years, and first findings seem to be promising 
with regard to its value for treatment prediction. How-
ever, the used measures differ broadly; there is almost no 
study that uses the same measures for the assessment of 
network interaction and connectivity. Therefore, the 
studies are hardly comparable. Further, many studies on 
EEG connectivity do not make an a priori hypothesis 
about alterations of connectivity between brain regions, 
resulting in a high number of tests that analyse every pos-
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sible connectivity pattern, possibly resulting in type I er-
rors. Identification of the most reliable and valid connec-
tivity parameters and application on hypothesis-driven, 
predefined networks should be among the first goals of 
future research in this field.

  Not only spontaneous EEG activity, but also ERPs 
hold value for the improvement of treatment. However, 
as it is the case in many resting-state EEG markers, there 
are promising markers that sometimes could not be rep-
licated in small-scale studies. Therefore, larger study 
groups and controlled trials are needed to estimate the 
full potential of ERPs.

  Since the aim of a personalized medicine approach is 
to improve treatment of the individual, studies are need-
ed that analyse the predictive value of central nervous sys-
tem arousal in patients for treatment outcome. Currently, 
data from the iSPOT and EMBARC trials in MDD are 
being analysed using this approach.

  It should be noted that personalized medicine with a 
focus on treatment prediction is in need of addressing in-
terindividual variance, which is in contrast to the search 
for biomarkers that reflect homogeneous diagnostic 
groups. Therefore, the mentioned differences in findings, 
sometimes even contrary to one another when looking at 
predictive markers for treatment response, might yield 
important information about different treatment op-
tions: it is possible that a marker predicts response to one 
treatment while it also could be found in non-responders 
to another treatment. The goal will be to disentangle these 
relationships with standardized and controlled trials, in-
cluding a variety of treatment arms and by embracing 
heterogeneity.

  Perspectives 

 The Research Domain Criteria provide a good frame-
work to overcome subjective decisions in the treatment 
of psychiatric disorders and might help to bridge the gap 
to the advances made in medical treatment in other do-
mains of medicine. In face of the myriads of available 
EEG-based parameters, it seems obvious that there will 
not be one single marker that fulfils all criteria to aid in 
the diagnosis and even predict treatment in different 
neuropsychiatric disorders. It will require combining a 
set of neurophysiological but also clinical and other bio-
markers to fulfil the promise of a personalized medicine 
approach. Simulations on existing data sets and probably 
the usage of non-linear methods such as artificial net-
works could help in the analysis of large data matrices to 

extract meaningful combinations for treatment predic-
tion  [96] . It should be noted that the goal is not a final 
threshold or combination of biomarkers for prediction 
but a matrix of meaningful parameters that should be 
subject to further refinements. Furthermore, one funda-
mental problem to be faced is that of defining clinically 
meaningful treatment end points. Several different pri-
mary outcome measures have been used ranging from 
the Beck Depression Inventory-II (BDI-II) to the Ham-
ilton Depression Inventory, and also using different cri-
teria such as remission or response, whereas the agree-
ment between these scales is far from perfect  [163] , thus 
making the ‘ground truth’ of ‘clinical response’ a moving 
target dependent on the instruments and definitions 
used.

  In the first place it is now necessary to initialize bio-
marker-guided treatment decisions that lead to increased 
remission rates in comparison to treatment as usual. Fur-
thermore, in MDD one faces the huge variety of treat-
ment options, ranging from psychotherapy with differ-
ent branches, over psychopharmacological interventions 
with completely different modes of action to brain stim-
ulation methods such as TMS or electroconvulsive ther-
apy but also sleep deprivation. In face of the high non-
response rates, a framework is urgently needed including 
different biomarkers that allow for an evidence-based 
choice of the right treatment option at the right time for 
the right patients. Preferably markers should be taken 
into account that can be interpreted in the context of 
their physiological meaning since this will increase the 
acceptance of a marker by clinicians. Furthermore, as 
mentioned above concerning alpha asymmetry, large 
sample sizes are required to also address gender-, age- 
and drug class-specific predictors. Therefore, large mul-
ticentre studies for the identification of those markers 
and their thresholds to predict treatment outcome have 
to be carried out, as is the case with the iSPOT-D and 
EMBARC studies. The next step will then be to initiate 
prospective randomized controlled trials that compare 
the biomarker-based treatment versus treatment based 
on therapist and patient preferences as it is currently 
good clinical practice. This way, personalized medicine 
could help to apply the already existing treatment op-
tions in a hopefully more effective and efficient way and 
thereby decrease the individual burden of disease for pa-
tients.
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