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Abstract  
Chorea-acanthocytosis (ChAc), a neurodegenerative disease, results from loss-of-function-
mutations of the chorein-encoding gene VPS13A. Affected patients suffer from a progressive 
movement disorder including chorea, parkinsonism, dystonia, tongue protrusion, dysarthria, 
dysphagia, tongue and lip biting, gait impairment, progressive distal muscle wasting, weakness, 
epileptic seizures, cognitive impairment, and behavioral changes. Those pathologies may be 
paralleled by erythrocyte acanthocytosis. Chorein supports activation of phosphoinositide-3-
kinase (PI3K)-p85-subunit with subsequent up-regulation of ras-related C3 botulinum toxin 
substrate 1 (Rac1) activity, p21 protein-activated kinase 1 (PAK1) phosphorylation, and activation 
of several tyrosine kinases. Chorein sensitive PI3K signaling further leads to stimulation of 
the serum and glucocorticoid inducible kinase SGK1, which in turn upregulates ORAI1, a 
Ca2+-channel accomplishing store operated Ca2+-entry (SOCE). The signaling participates in 
the regulation of cytoskeletal architecture on the one side and cell survival on the other. 
Compromised cytoskeletal architecture has been shown in chorein deficient erythrocytes, 
fibroblasts and endothelial cells. Impaired degranulation was observed in chorein deficient 
PC12 cells and in platelets from ChAc patients. Similarly, decreased ORAI1 expression and 
SOCE as well as compromised cell survival were seen in fibroblasts and neurons isolated from 
ChAc patients. ORAI1 expression, SOCE and cell survival can be restored by lithium treatment, 
an effect disrupted by pharmacological inhibition of SGK1 or ORAI1. Chorein, SGK1, ORAI1 
and SOCE further confer survival of tumor cells. In conclusion, much has been learned about 
the function of chorein and the molecular pathophysiology of chorea-acanthocytosis. Most 
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importantly, a treatment halting or delaying the clinical course of this devastating disease may 
become available. A controlled clinical study is warranted, in order to explore whether the in 
vitro observations indeed reflect the in vivo pathology of the disease.

Introduction

Lack of functional chorein, a protein encoded by VPS13A (vacuolar protein sorting-
associated protein 13A) [1], is the molecular basis of chorea-acanthocytosis (ChAc) [2-8], a 
progressive autosomal recessive neurodegenerative disease causing a complex movements 
disorder and variable erythrocyte acanthocytosis [7, 9-11]. ChAc is a rare differential of 
Huntington’s disease with a complex motor phenotype including generalized choreatic 
hyperkinesia, a peculiar feeding dystonia with tongue protrusion and tongue as well as lip 
biting, dysarthria, dysphagia, gait impairment with trunk instability due to sudden, violent 
spasms of the trunk, progressive distal muscle wasting and weakness, as well as increased 
plasma levels of creatine kinase [10-21]. The patients suffer in addition from epileptic 
seizures, cognitive impairment, and behavioral changes, such as obsessive-compulsive 
disorder [10, 12, 18, 22-25]. It has been speculated that chorein deficiency may foster the 
development of Alzheimer´s disease [26-28]. ChAc results in severe disability and early 
death of the affected patients [12]. Genetic knockout of chorein in mice leads to erythrocyte 
shape changes [24], neuronal apoptosis [29] and altered behavior [29]. In the striatum and 
hippocampus of those mice expression of the GABA(A) receptor-anchoring protein gephyrin 
and the GABA(A) receptor alpha1 (GABRA1) and gamma2 (GABRG2) subunits are increased 
[30]. 

Chorein is expressed ubiquitously in the brain and in a wide variety of further tissues 
with particularly high expression in testis, kidney and spleen [31-33]. Chorein participates 
in the regulation of diverse functions [33, 34], including cytoskeletal architecture [33-35], 
exocytosis [12, 34, 36] and cell survival [12, 37]. 

Chorein is at least partially effective by binding to phosphatidylinositol lipids [38]. In 
yeast binding of Vps13 proteins to phosphatidylinositol lipids of the cell membrane provides 
membrane contact sites and contributes to the steering of vesicle trafficking. Along those 
lines, studies in Saccharomyces cerevisiae, Dictyostelium discoideum, Tetrahymena 
thermophila and Drosophila melanogaster point to the involvement of Vps13 proteins in 
cytoskeleton organization, vesicular trafficking, autophagy, phagocytosis, endocytosis, 
proteostasis, sporulation and mitochondrial function [38]. Chorein may support activation 
of phosphoinositide-3-kinase (PI3K)-p85-subunit [12, 39, 40] with subsequent increase 
of ras-related C3 botulinum toxin substrate 1 (Rac1) activity, and p21 protein-activated 
kinase 1 (PAK1) phosphorylation [39]. Phosphoproteomics of tyrosine phosphorylation in 
erythrocytes from ChAc patients pointed to altered function of the kinases FYN, ABL1, EGFR, 
FGFR1, IGF1R, TEC, TGFBR1 and BTK, as well as of the phosphatases PTPRC and ACP1 [41]. 

In differentiated PC12 cells, chorein is localized in the termini of extended neurites and 
partially co-localized with synaptotagmin I [42]. Chorein and synaptotagmin I are observed 
in dopamine containing dense-core vesicles (DCVs) [42]. 

The present brief review will address the role of chorein in cytoskeletal architecture 
and its impact on erythrocyte shape and endothelial cell stiffness, in exocytosis, platelet 
degranulation, and transmitter release as well as in neuronal and tumor cell survival.

Cytoskeletal architecture, erythrocyte shape and endothelial cell stiffness

Chorein interacts with the membrane cytoskeletal proteins β-adducin and β-actin and in 
erythrocytes from a ChAc patient markedly reduced β-adducin isoform 1 and β-actin protein 
levels have been observed [43]. As shown in chorein-overexpressing human embryonic 
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kidney 293 (HEK293) cells, chorein co-localizes and interacts with β-adducin (isoforms 1 
and 2) and β-actin [43]. Gene-targeted ChAc-deficient mice express in the striatum only low 
levels of β-adducin isoform 1 [43]. Adducin and actin contribute to synaptic function and 
may thus participate in the pathophysiology of ChAc [43].

In both erythrocytes and fibroblasts isolated from chorea-acanthocytosis patients, actin 
microfilaments are depolymerized [34, 44] (Fig. 1). Moreover, the microtubular network 
as well as the intermediate filament networks of desmin and cytokeratins are deranged in 
fibroblasts from ChAc patients [34]. The disordered architecture is paralleled by decreased 
desmin and cytokeratin transcript levels. Thus, lack of functional chorein in ChAc fibroblasts 
leads to substantial structural disorganization of all cytoskeletal components [34].

The deranged regulation of actin polymerization presumably accounts for the shape 
change of acanthocytotic erythrocytes [39] and for a decrease of chlorpromazine-induced 
endovesiculation in acanthocytic erythrocytes from ChAc patients [35].

Expression of chorein is decreased in patients with Chronic Obstructive Pulmonary 
Disease [45]. To which extent the relative chorein deficiency of those erythrocytes affects 
the mechanical properties of those cells, remains to be shown. 

Chorein  is expressed in blood platelets [32]. The globular/filamentous actin ratio is 
higher in platelets from ChAc patients than in platelets from healthy volunteers [32]. Thus, 
similar to what was observed in erythrocytes [39] and fibroblasts [34], chorein deficiency 
of ChAc platelets results in actin depolymerization [32]. The cytoskeletal reorganization is 
paralleled again by altered phosphoinositide-3-kinase subunit p85 phosphorylation, and 
p21 protein-activated kinase (PAK1) phosphorylation [32].

Chorein is further expressed in endothelial cells [33]. Silencing of the VPS13A gene in 
those cells was followed by weakening of actin filaments, an increase of the soluble G-actin 
over filamentous F-actin ratio, cell softening and altered cell shape [33]. The observed 
effects were paralleled by and at least partially due to a decrease in FAK phosphorylation 
[33]. VPS13A silencing further up-regulated caspase 3 activity and triggered endothelial 
cell death [33]. Thus, chorein is a powerful regulator of cytoskeletal architecture, cell 
shape, mechanical stiffness and survival of vascular endothelial cells [33]. It is noteworthy 
that stiffness of endothelial cells impacts on release of NO and thus on peripheral vascular 
resistance and blood pressure [46, 47].

Exocytosis, transmitter release and platelet degranulation

In PC12 cells, chorein silencing compromises the expression of vesicle-associated 
membrane protein 8 (VAMP8) and reduces the number of vesicles [36]. As a result, chorein 
silencing blunts the stimulation of dopamine release following depolarization of the cell 
membrane by increase of extracellular K+ [36, 42].

Blood platelets from ChAc patients similarly express less VAMP8 than platelets from 
healthy volunteers [32]. Along those lines, silencing of chorein decreases VAMP8 expression 

Fig. 1. Actin architecture (F-actin, phalloidin 
staining) in erythrocytes from healthy volun-
teers (left) and from patients with chorea-ac-
anthocytosis (right) ChAc = chorea-acantho-
cytosis.
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in megakaryocytic (MEG-01) cells [32]. Degranulation of dense granules (ATP release) and 
of α granules (P-selectin exposure) following stimulation with collagen related peptide 
or TRAP is less pronounced in platelets from ChAc patients than in platelets from healthy 
volunteers [32]. Moreover, platelet aggregation following stimulation with different platelet 
agonists is reduced in platelets from ChAc patients as compared to platelets from healthy 
volunteers [32]. Thus, chorein deficiency decreases degranulation and aggregation of blood 
platelets [32].

Autophagy and cell survival

Chorein supports the survival of neurons and skeletal muscle cells [11]. Chorein 
overexpression confers survival of human embryonic kidney (HEK) cells during cell 
starvation, an effect attributed to interaction of chorein with α-tubulin and histone 
deacetylase 6, a known α-tubulin deacetylater and decisive component of basal autophagy 
[48]. Chorein deficient HEK cells accumulate autophagic markers and curtail autophagic 
flux [49]. Autophagy in turn strongly impacts on apoptosis [50-52]. In ChAc eythrocytes 
autophagy is decreased [53] and cytoplasmic levels of active Lyn and of autophagy-related 
proteins Ulk1 and Atg7 are enhanced [53]. In ChAc erythrocytes active Lyn forms with 
Heat-Shock-Protein HSP90&70 high-molecular-weight complexes which protect Lyn from 
proteasomal degradation [53]. The complexes bind to Ulk1 and Atg7 [53]. The association 
of chorein with Atg7 is compromised in ChAc erythrocytes. Impaired autophagy in ChAc 
erythrocytes leads to the cellular accumulation of multivesicular bodies and membrane 
remnants [53]. Moreover, the impaired autophagy in chorein deficient reticulocytes appears 
to delay the clearance of mitochondria and lysosomes [53]. According to observations in 
erythroid precursors from ChAc patients, chorein deficiency compromises erythropoiesis, 
increases active Lyn, leads to accumulation of the lysosmal membrane protein LAMP1 and of 
LAMP1-positive aggregates, and impairs the clearance of lysosomes and mitochondria [53]. 
Thus, chorein deficiency leads to accumulation of active Lyn, impairs autophagy, and thus 
compromises vesicle trafficking in erythroid maturation [53].

Cell death and cell survival are further dependent on alterations of cytosolic Ca2+ activity 
([Ca2+]i) [54, 55]. [Ca2+]i could be enhanced by Ca2+ release from intracellular stores with 
subsequent stimulation of the Ca2+ release activated Ca2+ channel subunits ORAI1, ORAI2 
and/or ORAI3 [56] by the Ca2+ sensing proteins STIM1 and/or STIM2 [12, 57-59]. Upon 
stimulation with STIM1/2, the ORAI isoforms accomplish store-operated Ca2+ entry (SOCE). 
Regulators of ORAI1 and thus SOCE include the PI3K pathway [12, 60]. 

Stimulation of intracellular Ca2+ release and SOCE may trigger oscillations of cytosolic Ca2+ 
activity ([Ca2+]i) [61] due to intracellular Ca2+ release with transient activation of SOCE followed 
by subsequent Ca2+ extrusion [62]. The pulsating short-lived increases of [Ca2+]i regulate 
several cellular functions such as Ca2+ dependent transcription factors and organization 
of the actin cytoskeleton without, unlike sustained increases of [Ca2+]i, compromising cell 
survival [63, 64]. The Ca2+ oscillations influence a variety of complex cellular functions [65, 
66], such as entry into the S and the M phase of the cell cycle [67]. The [Ca2+]i oscillations 
may further support cell survival [68, 69]. Accordingly, ORAI [56] and STIM [57] isoforms 
participate in the orchestration of survival, proliferation, and migration of tumor cells [70-
73] and neural stem/progenitor cells [74]. In contrast to Ca2+ oscillations, sustained [Ca2+]i 
increases trigger apoptosis [42-44]. 

Neurons generated from fibroblasts of patients with ChAc via induced pluripotent 
stem cells (iPSC) express less ORAI1 and STIM1 proteins than neurons generated from 
fibroblasts of healthy controls [12]. Accordingly, SOCE is smaller in ChAc neurons than 
in control neurons [12] (Fig. 2). The decreased SOCE of ChAc neurons is paralleled by an 
increased percentage of apoptotic cells [12] (Fig. 3). ORAI1 and STIM1 transcript levels and 
protein abundance, SOCE and cell survival are all increased by a 24 hours treatment with 
the antidepressant lithium [12, 37, 75], effects reversed by pharmacological inhibition of 
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serum & glucocorticoid inducible kinase SGK1 or of ORAI1 [12]. Thus, chorein deficiency 
impairs the SGK1-dependent expression of ORAI1 and STIM1 thus leading to blunted SOCE 
and enhanced cell death, effects all reversed by lithium [12].

Similar observations were made in fibroblasts [37]. Fibroblasts of ChAc patients express 
less ORAI1 protein than fibroblasts of healthy controls [37]. Accordingly, SOCE is decreased 
and apoptosis enhanced in ChAc fibroblasts as compared to control fibroblasts [37]. Lithium 
again increases SOCE and pharmacological inhibition of ORAI1 decreases SOCE [37]. Lithium 
decreases suicidal death of ChAc fibroblasts, an effect abrogated by pharmacological ORAI1 
inhibition [37].

The expression of ORAI1 is up-regulated by the PI3K-dependent [76] serum & 
glucocorticoid inducible kinase SGK1 [12, 77, 78]. The impaired activation of PI3K in chorein 
deficient cells [1-3] compromises activation of SGK1 and thus upregulation of ORAI1 [12]. 
PI3K signaling supports the survival of diverse cell types including cancer cells [48-51] and 
neurons [52-55]. 

Chorein does not only impact on neuronal, muscular cell and fibroblast survival, but may 
be similarly instrumental for the survival of tumor cells [60]. Chorein is expressed in various 
cancer cells [60]. Particularly strong chorein transcription was observed in drug resistant, 
poorly differentiated human ZF rhabdomyosarcoma cells [60]. In those cells chorein silencing 
downregulates phosphoinositide 3 kinase (PI-3K) [60], reduces ORAI1 expression and SOCE 
[60], decreases transcript levels and protein expression of anti-apoptotic BCL-2 and enhances 
the transcript levels of pro-apoptotic Bax [60]. Chorein silencing in rhabdomyosarcoma cells 
further leads to mitochondrial depolarization, caspase 3 activation and stimulation of early 
and late apoptosis [60]. Chorein silencing further decreases ORAI1 expression and SOCE 
[60]. Similar to chorein deficiency pharmacological inhibition of SGK1 decreases SOCE in 
rhabdomyosarcoma cells [60]. 

Fig. 2. Intracellular Ca2+ release and store-
operated Ca2+ entry (SOCE) in neurons from healthy 
volunteers and from ChAc patients without or with 
lithium treatment. Fura-2 fluorescence-ratio in 
fluorescence spectrometry before and following 
extracellular Ca2+ removal, addition of thapsigargin 
(1 µM), and re-addition of extracellular Ca2+ in 
neurons generated from healthy volunteers (white 
squares) and from ChAc patients without (black 
circles) and with (grey circles) lithium (24 h, 2 
mM) treatment.

Fig. 3. Phosphatidylserine translocation and propidium iodide uptake in neurons from healthy volunteers 
and from ChAc patients without and with treatment with lithium or 2-APB. A-E. Representative dot blots of 
propidium iodide staining versus annexin-V-binding of neurons generated from healthy volunteers (A) and 
from ChAc patients (B-E) without treatment (B) and with lithium treatment (2 mM) alone (C), with 50 µM 
2-APB (Ca2+ channel blocker) alone (D), and with both, lithium and 2-APB.
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It is tempting to speculate that decreased ORAI1 and SOCE could contribute to neuronal 
death in other neurodegenerative diseases. Lithium has been shown to favorably influence 
the clinical course of several neurodegenerative diseases [79-81], such as Huntington´s 
chorea, Alzheimer´s disease, Parkinson´s disease, amyotrophic lateral sclerosis as well 
as spinocerebellar ataxias type 1 and type 3 [12, 79-83]. Mechanisms involved in the 
neuroprotective effect of lithium include direct or Akt-mediated inhibition of glycogen 
synthase kinase GSK-3β, Akt-mediated inhibition of the proapoptotic forkhead box class 
O transcription factor Foxo3a and murine double minute (MDM), induction of autophagy 
by inhibition of inositol monophosphatase, stimulation of production and activity of 
neuroprotective brain derived neurotrophic factor BDNF, up-regulation of anti-apoptotic 
protein Bcl-2, as well as down-regulation of pro-apoptotic transcription factor p53, of the 
pro-apoptotic proteins Bad and Bax, of glutamate excitotoxicity, of calpain and of oxidative 
stress [12, 81, 84]. By inhibiting glycogen synthase kinase GSK3β,lithium may modify the 
activity of carriers [85, 86] and channels [86]. Moreover, lithium may inhibit toll-like receptor 
TLR4 expression in astrocytes and thus counteract inflammation [87]. In neuronal cultures 
generated from ChAc patients, the anti-apoptotic effect is disrupted by pharmacological 
inhibition of ORAI1, an observation suggesting but not proving that the in vitro effect of 
lithium is due to up-regulation of the Ca2+ channel [12].

Conclusions

Within the past few years tremendous progress has been made in deciphering multiple 
functions of the clinically highly relevant protein chorein (Fig. 4). Most importantly, 
therapeutic opportunities have been identified. Additional effort is, however, required to 
fully understand the diverse ramifications of chorein dependent functions. Most importantly, 
treatments shown to be effective in vitro need to be tested in clinical trials on patients 
suffering from chorea-acanthocytosis. It is hoped that we are close to the ultimate goal of 
chorein related research, i.e. the development of a treatment halting or at least slowing the 
clinical course of this devastating genetic disorder.
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Fig. 4. Chorein sensitive functions in human cells. The question marks point to the many further putative 
chorein sensitive functions.
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