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 We read with interest the article ‘Unbalanced Baseline in School-Based Interventions to 
Prevent Obesity: Adjustment Can Lead to Bias – a Systematic Review’  [1] , hereafter ‘ the 
article ’. We agree with the authors that more rigor is needed in research on obesity treatment 
and prevention, and in the design, analysis, and reporting of cluster randomized controlled 
trials (cRCTs)  [2] , also called group randomized trials. 

  Unfortunately, rather than offering clarifying information,  the article  is based on incorrect 
statistical reasoning and inaccurate statements about what past publications have shown. 
The fundamental conclusion as stated in its title and elsewhere in  the article  is incorrect. For 
example, the statement ‘Although adjusting for the baseline values of parameters  (sic, vari-
ables – Li et al.)  that are highly influenced by baseline values is a standard procedure, this 
approach can bias the results …’ is simply untrue. Such erroneous conclusions could lead 
researchers to avoid legitimate power-enhancing analytic methods, and should be retracted. 

  Adjusting for pre-randomization covariates in randomized trials does not introduce bias 
nor invalidate significance tests. This is known from statistical principles and requires neither 
simulation nor meta-analyses. By definition and design, in randomized experiments pre-
randomization covariates are independent of treatment assignment, with the exception of 
chance deviations which are accommodated in the calculation of frequentist significance tests 
and their associated p values. If the outcome variable (Y) is measured pre-randomization (Y 0 ) 
and at the end of the study (Y 1 ), then using either Y 1  or Y 0  – Y 1  as outcomes and either 
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controlling or not controlling for Y 0  as a covariate are legitimate analyses  [3] , among other 
analytical choices. The inclusion of Y 0  as a covariate, though, will often increase statistical 
power for a given effect size when the null hypothesis is false if appropriate assumptions are 
met  [4, 5] . This is true for both cRCTs and ordinary RCTs  [6] . 

   The article ’s erroneous conclusion is based on two fallacious lines of reasoning. First,  the 
article  miscites past literature.  The article  states, ‘A computer simulation study which 
compared the biases in the estimated treatment effect, with and without adjusting for 
measurement error at baseline and for different levels of baseline imbalance, concluded that 
adjusting for baseline leads to bias, especially when sample sizes are small.’ However, the 
cited paper  [7]  found no evidence of bias in estimation of treatment effects when controlling 
for covariates with ordinary least squares methods (again, as knowable from statistical prin-
ciples). Rather, that paper found bias due to a particular measurement error correction – a 
different matter entirely.  The article  also states that papers and books ‘have called attention 
to the controversy about whether baseline measurements should be adjusted for in this 
context’ and cites six references in support. The cited paper  [7]  is one of those, but we note 
that it states ‘Controversy exists in the literature about whether baseline measurement error 
should be adjusted for in this context’. Furthermore, the cited references are definitely not 
addressing only ‘this context’ of cRCTs. One of the books they cite makes a statement contrary 
to  the article’s  claim: ‘In general, the analysis of longitudinal data from a randomized trial is 
the only setting where we recommend adjustment for baseline through analysis of cova-
riance’  [8] . These six cited references address the context of controlling for covariates in 
observational (nonrandomized) studies, whereas  the article  is explicitly about cRCTs.

  The second erroneous line of reasoning  the article  offers involves their meta-analysis. 
 The article  compared articles which did and which did not adjust for baseline values of the 
outcome and found that, on average, results regarding treatment effects differed. Even if we 
take this meta-analytic finding as correct at face value, it has no bearing on bias of treatment 
effect estimates.  The article ’s meta-analysis is of cRCTs, but its evaluation of an association 
between analytic procedure and results across cRCTs constitutes an observational analysis. 
The meta-analyzed cRCTs that did or did not employ covariate adjustment might differ in 
many ways which could account for the observed difference in results. If the difference in 
treatment point estimates (not their variances)  within  each cRCT   varied significantly as a 
function of whether a pre-randomization covariate was used, that would be a curious thing 
indeed and hard to explain, but that is not what is presented in  the article . 

  Another serious error beyond those concerning baseline adjustment concerns sample 
sizes. On page 222  the article  states that a sample size of 1,000 is needed to detect meaningful 
changes in BMI. For a simple pretest-posttest cRCT with  m  persons nested within  g  groups 
across  c  experimental conditions, there will be  c  ×  g  ×  m  total persons, or sample size  N . While 
the impact of clustering, measured by the intraclass correlation coefficient, on the design 
effect can be profound, the key issue for statistical power in a cRCT is the degrees of freedom 
(df) for the between-group variance, sometimes written τ. This is the number of conditions 
multiplied by the number of groups minus one, or df =  c  × ( g  – 1)  [9] . This is why cRCTs need 
a large number of groups, not necessarily a large number of persons. For example,  the article  
cites a paper  [10]  which was a cRCT with 454 children nested in 7 schools in each of 2 exper-
imental conditions. Inference for the primary analysis was based not on df  ≈  454, but df = 12, 
as demanded by statistical theory. The presentation of study sample sizes listed in table 2 of 
the article is therefore misleading. Note that a cRCT with one group per condition and 500 
persons per group does in fact have 1,000 subjects. But it has 0 df for assessing the treatment 
effect.  The article  does not adequately recognize the hierarchical nature of cRCTs. 

  In sum, the  article’s   [1]  conclusions are at odds with established statistical principles and 
based on erroneous reasoning and interpretations of prior literature.  The article ’s conclu-
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sions are not only wrong, but may inappropriately dissuade readers from powerful analytic 
choices and lead other readers to incorrectly conclude that published cRCTs which have used 
covariate adjustment are invalid or that large numbers of persons, not groups, are essential. 
Given the above, we believe  the article  should be retracted.
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