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structive pulmonary disease (COPD) was detected with an 
acceptable accuracy (74%), whereas all other diseases were 
poorly identified. The new data-based decision tree im-
proved the general accuracy to 68% after 10-fold cross-vali-
dation when detecting the most common lung diseases, 
with a significantly higher positive predictive value and sen-
sitivity for COPD, asthma, interstitial lung disease, and neu-
romuscular disorder (83/78, 66/82, 52/59, and 100/54%, re-
spectively).  Conclusions:  Our data show that the current al-
gorithms for lung function interpretation can be improved 
by a computer-based choice of lung function and clinical 
variables and their decision-making thresholds. 

 © 2017 S. Karger AG, Basel 

 Introduction 

 Pulmonary function tests (PFTs) are the prime tool of 
respiratory physicians. In clinical medicine, PFTs are of-
ten used to evaluate respiratory symptoms, to diagnose 
diseases, and to assess functionality and preoperative risk 
 [1] . After taking the patient’s history, the PFT is often 
combined with blood analysis, lung imaging, and more 
specific tests (such as skin prick tests, bronchial challenge, 
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 Abstract 

  Background:  The use of pulmonary function tests is primar-
ily based on expert opinion and international guidelines. 
Current interpretation strategies are using predefined cut-
offs for the description of a typical pattern.  Objectives:  We 
aimed to explore the predicted disease outcome based on 
the American Thoracic Society/European Respiratory Soci-
ety (ATS/ERS) interpreting strategy. Subsequently, we inves-
tigated whether an unbiased machine learning framework 
integrating lung function with clinical variables may provide 
alternative decision trees resulting in a more accurate diag-
nosis.  Methods:  Our study included data from 968 subjects 
admitted for the first time to a pulmonary practice. The final 
clinical diagnosis was based on the combination of com-
plete pulmonary function with the investigations that were 
decided at the physician’s discretion. Clinical diagnoses 
were separated into 10 different groups and validated by an 
expert panel.  Results:  The ATS/ERS algorithm resulted in a 
correct diagnostic label in 38% of the subjects. Chronic ob-
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exercise testing, bronchoscopy with biopsies, bronchoal-
veolar lavage, etc.  [2–4] ) to come to a final diagnosis  [5] . 
When considering the value of PFTs alone, the Belgian 
Pulmonary Function Study (BPFS) clearly showed that 
spirometry, resistance, lung volume, and diffusing capac-
ity significantly and independently contributed to the di-
agnostic workup  [6] . When combined with clinical his-
tory, PFTs had an accuracy of 77% in predicting the diag-
nosis, which may indicate that these tests (when correctly 
interpreted) have a high potential for an appropriate di-
agnostic labeling.

  The use of PFTs is primarily based on expert opinion 
and international guidelines predominantly dealing with 
asthma, chronic obstructive pulmonary disease (COPD), 
and lung fibrosis  [7, 8] . In 2005, an American Thoracic 
Society/European Respiratory Society (ATS/ERS) task 
force designed a simplified algorithm to assess lung func-
tion in clinical practice  [9] . It involves the recognition of 
typical patterns with strictly defined cutoffs for abnor-
mality (obstructive, restrictive, or mixed pattern) and 
grades severity over time. Various algorithms have incor-
porated this strategy, and most PFT equipment has now 
built-in software that can generate a preliminary inter-
pretation  [10–12] . Unfortunately, these algorithms are 
not well established; they remain rather descriptive, do 
not deal with atypical patterns, and do not rely on clinical 
characteristics for diagnostic suggestion. In daily prac-
tice, these shortcomings are tackled by an expert clinical 
reading, which may explain why none of these automated 
protocols have found their way to clinical routine. Inter-
estingly, the opposite has happened with automated pro-
tocols for electrocardiography (ECG) recordings  [13, 14] .

  In this study, we aimed to explore whether the inter-
pretation of PFTs for respiratory disease labeling can be 
automated. By developing a computer algorithm based 
on the ATS/ERS interpreting strategy, we checked the 
predicted disease outcome in a large population. Sub-
sequently, we investigated whether a machine learning 
framework may provide new decision algorithms that re-
sult in a more accurate diagnosis.

  Subjects and Methods 

 Study Population 
 The study included the data of 968 subjects from the BPFS, a 

prospective cohort study that enrolled a clinical population-based 
sample of all successive undiagnosed patients admitted for the first 
time to one of the 33 participating Belgian hospitals due to respira-
tory symptoms  [6] . The study was performed in the periods from 
June 6 to September 12, 2011, and from January 16 to June 12, 
2012. Briefly, all enrolled subjects were Caucasians between 18 and 

75 years old who had performed a complete PFT at cohort entry 
(including post-bronchodilator spirometry, whole-body plethys-
mography for lung volume and airway resistance, and diffusing 
capacity). To establish a respiratory disease diagnosis, all necessary 
additional tests including imaging, ECG, and other PFTs were per-
formed at the physician’s discretion. The final diagnosis for each 
subject was subsequently validated by Belgian local focus groups 
(groups of 20–25 pulmonologists) who jointly evaluated all tests 
outcomes. The study population’s baseline characteristics are 
shown in  Table 1 , covering healthy controls as well as a wide range 
of respiratory diseases that may present with a disturbed PFT with 
a specific pattern: asthma, COPD, other obstructive diseases (in-
cluding bronchiolitis, bronchiectasis, and cystic fibrosis), upper 
airway obstruction, obesity, interstitial lung disease (ILD), system-
ic sclerosis or vascular disease, cardiac failure, and hyperventila-
tion. Because of similar lung function disturbances, neuromuscu-
lar disorder (NMD) combined patients with chest wall or pleural 
disease, lung resection, or true neuromuscular disease. Others di-
agnoses (lung cancer, rhinosinusitis, etc.) were excluded from the 
analysis. The study protocol was approved by the Ethics Commit-
tee of the University Hospital in Leuven, which acted as the leading 
Ethics Committee, and by all the Ethics Committees of the par-
ticipating hospitals which acted as subsidiary Ethics Committees. 
All included patients provided informed consent. The BPFS design 
can be found on www.clinicaltrials.gov (NCT01297881).

  Pulmonary Function Tests 
 All PFTs were performed according to the ATS/ERS criteria 

 [15]  using standardized equipment (Masterscreen Jaeger; CareFu-
sion, Germany). Spirometry data are post-bronchodilator mea-
sures and are expressed, along with plethysmography measure-
ments of airway resistance and lung volumes, as percent predicted 
of normal reference values  [16, 17] . Diffusing capacity for carbon 
monoxide (D LCO ) was measured by the single-breath gas transfer 
method, using a standardized carbon monoxide and helium gas 
mixture, and expressed as percent predicted of reference values 
 [18] .

  PFT Interpretation Algorithm 
 To interpret the PFTs, the international guidelines of the ATS 

and the ERS were applied  [9] . An important modification was 
made for the cutoff of FEV 1 /VC, where we applied a post-bron-
chodilator FEV 1 /FVC fixed ratio of 0.7, in accordance with the 
GOLD and our local clinical recommendations for the diagnosis 
of obstructive airways disease  [8]  ( Fig. 1 ).

  Computer Algorithm and Validation 
 The development of a computer algorithm to automatically in-

terpret all PFTs was performed in MATLAB 8.3 (The MathWorks, 
Natick, MA, USA). Using the Statistics and Machine Learning 
Toolbox, a new decision tree was developed based on lung func-
tion data (included measurements: FEV 1 , FVC, FEV 1 /FVC, PEF, 
FEF25, FEF50, FEF75, FEF25–75, R AW , sG AW , VC, RV, TGV, TLC, 
D LCO , K CO ), combined with the patient characteristics age, pack-
years, CAT score, gender, and BMI. The best split criterion was 
determined using maximal deviance reduction  [19] . To avoid 
“overfitting” of the model and to get a better sense of the predictive 
accuracy of a decision tree, a stratified 10-fold cross-validation was 
performed  [20] . Briefly, the training data were randomly split into 
10 equal segments, and 10 new trees were trained on 9 segments 
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 Table 1.  Population characteristics

Healthy Asthma COPD Other 
obstructive

Heart 
failure

ILD PV NMD HV Obesity

Subjects, n 156 364 222 56 12 39 9 26 28 23

Gender, M/F 81/75 164/200 127/95 28/28 6/6 23/16 5/4 18/8 11/17 14/9

Age, years 54 
(42–64)

50 
(34–60)

62 
(53–69)

57 
(47–67)

72 
(59–78)

63 
(52–72)

64 
(57–71)

54 
(41–65)

45 
(35–52)

52 
(44–64)

FEV1, 
%pred.

103 
(92–114)

92 
(80–102)

64 
(51–80)

89 
(78–100)

91 
(78–107)

85 
(72–107)

98 
(87–110)

67 
(59–81)

101 
(93–108)

86 
(74–100)

FVC, 
%pred.

107 
(97–115)

101 
(91–112)

88 
(73–105)

96 
(87–110)

95 
(80–113)

86 
(74–104)

99 
(87–118)

70 
(56–82)

109 
(102–115)

86 
(77–100)

FEV1/FVC, 
%

80 
(75–83)

76 
(68–81)

60 
(51–66)

74 
(70–80)

74 
(72–79)

80 
(75–85)

77 
(73–83)

81 
(76–83)

82 
(78–84)

81 
(78–83)

TLC, 
%pred.

105 
(96–112)

104 
(93–115)

112 
(99–124)

102 
(93–111)

85 
(81–99)

85 
(75–92)

97 
(83–109)

79 
(67–85)

108 
(97–113)

82 
(78–91)

DLCO, 
%pred.

86 
(77–99)

86 
(78–95)

59 
(48–70)

77 
(66–91)

79 
(60–88)

54 
(41–63)

69 
(47–86)

67 
(50–80)

82 
(72–90)

83 
(75–95)

KCO, 
%pred.

94 
(82–104)

98 
(86–110)

74 
(58–91)

92 
(83–107)

101 
(77–114)

74 
(67–83)

78 
(69–106)

107 
(95–122)

90 
(79–97)

110 
(95–123)

 Values of other disease diagnoses (lung cancer, NTE problems, etc.) and upper airway obstruction are not reported (n = 33). Values are medians and 
IQR unless indicated otherwise. COPD, chronic obstructive pulmonary disease; DLCO, diffusing capacity for carbon monoxide; FEV1, forced expiratory 
volume in 1 s; FVC, forced vital capacity; HV, hyperventilation; ILD, interstitial lung disease; KCO, transfer coefficient for carbon monoxide; NMD, 
neuromuscular disorder; PV, pulmonary vascular disorders; TLC, total lung capacity.

  Fig. 1.  Modified ATS/ERS algorithm for as-
sessing pulmonary function tests in clinical 
practice. COPD, chronic obstructive pul-
monary disease; D LCO , diffusing capacity 
for carbon monoxide; FEV 1 , forced expira-
tory volume in 1 s; FVC, forced vital capac-
ity; ILD, interstitial lung disease; LLN, low-
er limit of normal; NMD, neuromuscular 
disorder; PV, pulmonary vascular disor-
ders; TLC, total lung capacity; VC, vital ca-
pacity. 
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and validated on the data from the segment not included in train-
ing. This method gives a better estimation of the predictive accu-
racy of the produced decision tree, since it tests and improves new 
trees on new data.

  Results 

 Abnormalities and Diagnosis 
 Applying the ATS/ERS algorithm revealed that in a real 

clinical population sample, the most prevalent lung func-
tion pattern was the healthy one (60%) followed by an ob-
structive pattern (36%), whereas restrictive and mixed 
patterns were very uncommon (4% together). Only 5% of 
the truly healthy subjects had an FEV 1 /FVC ratio <0.7, yet 
only 25% of all subjects with a normal pattern were truly 
healthy ( Fig. 2 ). As expected, the majority of healthy pat-
terns were found in patients with asthma, who are known 
to have normal pulmonary function in stable conditions. 
Of the 222 COPD patients, 197 had an obstructive pattern 
according to the modified ATS/ERS rules; 25 had an FEV 1 /
FVC ratio >0.7 and may have been labeled as COPD pa-

tients by the expert panel because of hyperinflation, high 
resistance, low D LCO , or emphysema on CT. An obstruc-
tive pattern was also retrieved in 30% of the asthma sub-
jects. A purely restrictive pattern was rarely seen in COPD 
(only 1 patient), and although some patients with ILD, 
NMD, or obesity presented within this restrictive sub-
group, the majority were found under the healthy label. 
When further applying the ATS/ERS algorithm, the lower 
limit of normal (LLN) for D LCO  was used as a cutoff to split 
the predicted disease patterns ( Fig. 3 ). It helped in the dif-
ferentiation of asthma from COPD within the obstructive 
group, but was not selective enough to identify pulmonary 
vascular disease in the group with normal pattern or ILD 
in the group with restrictive pattern. Despite the fact that 
the largest fraction of patients with real ILD and NMD 
were found with a normal lung function pattern, once cat-
egorized within the restrictive group, D LCO  was able to 
correctly classify 5 of the 6 ILD patients. Unfortunately, 
D LCO  was not able to identify NMD within the restrictive 
labels, as 10 patients out of 13 were misdiagnosed with 
ILD. In the complete cohort, 38% of subjects were cor-
rectly classified. If restricting the cohort to diseases that 

  Fig. 2.  Distribution of each lung disease 
within each pattern of abnormality accord-
ing to the ATS/ERS decision tree. ATS, 
American Thoracic Society; COPD, chron-
ic obstructive pulmonary disease; ERS, Eu-
ropean Respiratory Society. 
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can be labeled by the ATS/ERS algorithm (healthy, asth-
ma, COPD, PV, ILD, and NMD;  n  = 810), accuracy in-
creased to 46%. It resulted in 24% sensitivity and 94% 
specificity for the diagnosis of asthma, 73% sensitivity and 
94% specificity for COPD, and 13% sensitivity and 98% 
specificity for ILD. A detailed comparison of correct and 
incorrect classifications is presented in  Figure 4 a.

  The Decision Tree Suggests the Final Diagnosis 
 As the computer development of new decision trees is 

very much affected by disease prevalence, we only includ-
ed data from the most common lung diseases (asthma, 
COPD, ILD, NMD) and added the healthy individuals. 
PV was only present in 9 cases (<1%) and was therefore 
not included in the analysis. Applying the modified ATS/
ERS tree to this group ( n  = 801) of most common dis-
eases resulted in a similar accuracy of 46% (365/801) for 
correct diagnosis. We then developed a computer-based 
algorithm to define upfront a 100% specific lung function 
pattern for NMD ( Fig. 5 a), as its prevalence in the BPFS 
was still too low to accurately discriminate within the en-
tire population. Fourteen out of 26 NMD subjects were a 
priori selected as having a unique lung function pattern 
of NMD. Next, all lung function data and a selected set of 
clinical parameters (age, pack-years, CAT score, gender, 

and BMI) of the remaining population (asthma, COPD, 
ILD, and healthy subjects;  n  = 784) were subjected to a 
machine learning framework to develop a decision algo-
rithm. This tree, visualized in  Figure 5 b, resulted in 74% 
accuracy on the training data, which decreased to 68% 
after 10-fold cross-validation. Most interestingly, the de-
cision tree started with a diffusing capacity cutoff of 70% 
predicted as first discriminator, followed by an FEV 1 /
FVC ratio cutoff around 70% predicted. On the lower lev-
els of the tree, pack-years, age, PEF, and TLC were all 
found to offer significant discriminative power to the 
tree. A confusion matrix on the decision algorithm that 
combined the a priori identification of NMD with the tree 
for the more prevalent disease on all 801 subjects is shown 
in  Figure 4 b. It demonstrates that the new algorithm was 
able to recognize COPD with a high positive predictive 
value (PPV = 83%) and sensitivity (true positive rate 
[TPR] = 78%). The proposed algorithm was much stron-
ger to predict the presence of asthma (PPV = 66%, TPR = 
82%) and ILD (PPV = 52%, TPR = 59%). For the NMD 
pattern, a TPR of 54% and a PPV of 100% were reached. 
Obviously, the decision rules were specific enough, cross-
ing the 90% specificity for every disease. Defining a clear 
healthy pattern gave the least favorable results, as it is of-
ten confused with non-obstructed asthma.

  Fig. 3.  Distribution of each respiratory disease categorized by the ATS/ERS algorithm into diagnostic classes. 
COPD, chronic obstructive pulmonary disease; HV, hyperventilation; ILD, interstitial lung disease; NMD, neu-
romuscular disorder; PV, pulmonary vascular disorders; UAO, upper airway obstruction. 
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  Discussion 

 In this study, we developed a computer program for 
the automated data-driven interpretation of PFTs. When 
based on the international guidelines, the developed pro-
gram was able to provide a correct diagnosis in only 38% 
of the studied population. Additionally, major mistakes 
were found in the discrimination of asthma from COPD 
and healthy individuals, and in the accurate labeling of 
restrictive diseases such as ILD and NMD. When devel-
oping an unbiased decision tree based on data mining 
programs that included not only lung function variables 
but also clinical patient characteristics, the accuracy in-
creased significantly to 68%.

  Automation in clinical practice is gaining pace. Apart 
from automated ECG interpretation, we are witnessing 
similar automations in detecting mammogram abnor-
malities, multiple sclerosis lesions on CT scans, or inter-
pretation of laboratory tests  [21–23] . Automated inter-
pretation of PFTs has not yet become a clinical reality, 
due to the lack of accurate diagnostic guidelines to label 
lung disorders based on specific pulmonary function pat-
terns. The weaknesses of current interpretation strate-

gies, which have been criticized by several experts in the 
past, are clearly demonstrated by our results  [24–26] . One 
of the reasons for these weaknesses may be found in the 
choice of thresholds and parameters, where authors were 
motivated by simplicity rather than pure evidence. For 
example, in the ATS/ERS decision tree, a D LCO  below the 
LLN is used to differentiate between ILD and NMD. Both 
diseases may present with reduced alveolar ventilation 
(VA) leading to reduced gas transfer, but in contrast to 
ILD and interstitial involvement, the reduction in VA will 
be the main cause of reduced D LCO  in NMD. K CO  normal-
izes diffusing capacity for VA in case of chest wall disor-
ders or NMD and is therefore a more reliable marker for 
the further distinction of ILD from NMD  [27, 28] . When 
analyzing our data using the LLN of K CO  as a threshold, 
none of the NMD patients had low K CO , whereas 63% of 
the ILD subjects did. Further analysis identified K CO  as 
the best differentiator between NMD and ILD, as a thresh-
old at 85% of predicted values discriminated 88% of all 
NMD and ILD. Another weakness of the ATS/ERS deci-
sion tree lies in the definition of normal healthy lung 
function patterns, which is solely based on an FEV 1 /FVC 
ratio, a VC, and a D LCO  above the LLN. Many lung dis-

a b

  Fig. 4.   a  Confusion matrix with all correctly and incorrectly classified subjects using the ATS/ERS algorithm. 
There are 6 labels ( n  = 810) correctly classified in 46% of cases.  b  Confusion matrix of the newly developed deci-
sion tree after 10-fold cross-validation (accuracy 68%). ATS, American Thoracic Society; COPD, chronic obstruc-
tive pulmonary disease; ERS, European Respiratory Society; ILD, interstitial lung disease; NMD, neuromuscular 
disorder; PPV, positive predictive value; PV, pulmonary vascular disorders; TPR, true positive rate = sensitivity. 
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eases may still appear with large disturbances of other pa-
rameters in combination with changes on these key pa-
rameters that are statistically within the normal limits, 
but in combination may clearly suggest disease.

  By the development of a new unbiased decision tree, we 
are demonstrating that careful data-based modelling im-
proves the accuracy of decision-making. Interestingly, the 
computer integrates clinical variables in the decision pro-
cess, which is exactly what clinicians would do when read-
ing and interpreting lung function data. For instance, the 
different pathways that are given by the computer are all 
tracks that make clinical sense, with computer-based cut-
offs and thresholds that are different from the lower or 
upper limits that are normally used. Being data-driven, 
our decision tree follows clinical reasoning, but also takes 
into account statistical chances for a certain outcome. For 
example, normal D LCO  will never lead to a diagnosis of 
COPD, but rather to one of obstructive asthma. It does not 

mean that COPD with normal D LCO  does not exist, yet the 
chance is low and therefore accepted as a mistake. Overall, 
the decision tree designed by the computer is approaching 
the accuracy of the expert panel, which reached 80% ac-
curacy for healthy, asthma, ILD, NMD, and COPD based 
on the combination of 4 tests with clinical history  [6] .

  Although the current algorithms are improving lung 
function interpretation, there are still many mistakes with 
asthma and its differentiation from COPD and healthy. 
This problem has certainly to do with the fact that asthma 
may appear with a complete healthy and normal lung 
function on the one hand, and with an irreversible ob-
struction mimicking COPD on the other hand. We think 
that further developments for automated interpretation 
strategies should focus on lung functions that have an a 
priori disturbed pattern. How this disturbance should be 
defined is still unclear, but it is obvious that we should be 
less restrictive than what the current ATS/ERS rules are 

a

b

  Fig. 5.   a  A priori lung function pattern spe-
cific to discriminate subjects with neuro-
muscular disease (14 out of 26), yet not de-
tecting any other disease.  b  Newly devel-
oped decision tree to assess pulmonary 
function and predict the 4 most common 
lung states. Numbers of subjects belonging 
to each classification group are indicated. 
Twelve of 26 patients with NMD are mis-
classified by definition. COPD, chronic ob-
structive pulmonary disease; D LCO , diffus-
ing capacity for carbon monoxide; FEV 1 , 
forced expiratory volume in 1 s; FVC, 
forced vital capacity; ILD, interstitial lung 
disease; K CO , transfer coefficient for carbon 
monoxide; NMD, neuromuscular disor-
der; PEF, peak expiratory flow; PY, pack-
years; R AW , airway resistance; RV, residual 
volume; TLC, total lung capacity.     
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suggesting. One challenging approach may be the inclu-
sion of new more selective parameters of PFTs to improve 
the differentiation between these diseases  [29, 30] . Anoth-
er problem for the development of automated interpreta-
tion of lung function is its inherent dependency on the 
prevalence of the diseases comprised in the dataset. For 
instance, when developing a tree with no a priori exclusion 
of NMD, the PPV was only 42%, with only 50% of these 
patients being correctly labeled despite a very specific dis-
ease pattern in a majority of these rare cases. We solved 
this problem by an upfront selection of the pattern on 
which there is no doubt and found out that this combined 
approach improved the overall accuracy from 64 to 68%.

  An alternative approach for diagnostic labeling is to 
switch from easily interpretable algorithms such as deci-
sion trees to hardly or not interpretable black box algo-
rithms such as neural networks, support vector machines, 
and others, which are used in most decision support sys-
tems nowadays  [31, 32] . Undoubtedly, these approaches 
will be beneficial in terms of diagnostic correctness  [33–
35] . An exploratory analysis of neural networks in our 
dataset already increased the overall accuracy to 82% after 
10-fold cross-validation  [33] . However, they are dataset 
specific and therefore will only be applicable once we have 
much larger datasets. Moreover, they will be hardly ac-
cepted by clinicians if there is no logical understanding. 

 Finally, and inherent to any automated interpretation 
of PFTs, there is the need of sufficient quality of the per-
formed tests. Different studies have shown that poorly 
performed tests increase the risk of misinterpretation and 
misdiagnosis  [36, 37] . Within-test acceptability and be-
tween-test reproducibility should be achieved by ade-
quate coaching from pulmonary function laboratory per-
sonnel. Hence, there are many guidelines assisting for op-
timal quality control  [15, 38, 39] .

  To conclude, using the simple decision algorithms to 
determine abnormal patterns of disease and subsequent-
ly predict specific respiratory diseases is not accurate. Our 
data show that the current algorithms can be improved 
by a computer-based choice of key decision variables and 
their decision-making thresholds. This technology may 
lead to the development of computer-aided decision sup-
port systems for the accurate interpretation of PFTs.
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